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∞ Motivation ∞

• I came across Grete Hermann’s 1935 critique of von

Neumann’s argument only to find it very much ignored.

• Reading von Neumann’s book I could not see why one of his

assumptions is supposed to be ‘silly’.

This judgement appears to be totally misattributed.

• In order to give a better judgement of the argument I

want to know what the argument actually tells us.
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∞ Outline ∞

1. Von Neumann’s no hidden variable argument

2. It’s supposed sillyness and the standard view

3. A new look:

• The argument is not silly but merely unconvincing

4. Grete Hermann’s critique on von Neumanns’ ar-

gument

• Similar critique as John Bell gave thirty years later.

• The reception of her work

5. What actually does the von Neumann argument

tell us?
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∞ Von Neumann’s 1932 no hidden variable argument ∞

Von Neumann: What reasons can be given for the disper-

sion found in some quantum ensembles?

(Case I): The individual systems differ in additional pa-

rameters, which are not known to us, whose values deter-

mine precise outcomes of measurements.

=⇒ deterministic hidden variables.

(Case II): ‘All individual systems are in the same state, but

the laws of nature are not causal’.

ad Case I: No physical method exists of dividing a dis-

persive ensemble into dispersion free ensembles, because of the

unavoidable measurement disturbance.

• However, it nevertheless is possible conceptually to think

of each ensemble as composed out of two (or more) dispersion

free subensembles.

• Von Neumann’s proof is intended to show that even the latter

is impossible.
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• Von Neumann’s notion of a hidden variables theory :

It is a causal theory which defines the state of the system ‘abso-

lutely’ by supplying ‘additional numerical data’– this additional

data are the ‘hidden parameters’.

‘If we were to know all of these, then we could give the values

of all physical quantities exactly and with certainty.’

A hidden variables theory now is one which is ‘ [. . . ] in

agreement with experiment, and which gives the statistical

assertions of quantum mechanics when only φ is given (and

an averaging is performed over the other coordinates).’

• Mathematical characterization of hidden variables:

Every physically realizable state can be represented as a mixture

of homogeneous dispersion-free states:

(α′) An ensemble is dispersion free if

Exp(R2) = (Exp(R))2 , ∀ R.

(β ′) An ensemble is homogeneous or pure if the statistics of

it is the same as that of any of its subensembles.

E = aE1 + bE2 =⇒ E = E1 = E2.
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∞ The question of ’hidden parameters’ ∞

• Now suppose there are homogeneous ensembles, then if

hidden variables exist (any dispersive ensemble can thus be split

into two or more non-dispersive ones), the homogeneous ensem-

bles must be dispersion free:

=⇒ No dispersive ensemble can be homogeneous.

This is what according to von Neumann is implied by the exis-

tence of hidden variables.

• In classical Kolmogorov type statistical ensembles all and

only dispersion free ensembles are homogeneous.

What about quantum mechanical ensembles?

Von Neumann proofs that this is not the case: all homogeneous

ensembles are dispersive.
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The Proof.

We have to consider a theory general enough to deal with

both Case I and Case II statistical theories.

Von Neumann implements this as follows. Every physical en-

semble determines a functional Exp, which is supposed to

characterize it completely from a statistical point of view.

The Exp-functional must satisfy the following general assump-

tions:

(0) To each observable of a quantum mechanical system cor-

responds a unique hypermaximal Hermitian operator in

Hilbert space. This correspondence is one-to-one.

(I) If the observable R has operatorR then the observable f(R)

has the operator f(R).

(II) If the observables R, S, . . . have the operators R, S, . . .,

then the observable R + S + . . . has the operator R +S +

. . . . (the simultaneous measurability of R + S + . . .

is not assumed.)

(A’) If the observable R is by nature a nonnegative quantity

then Exp(R) ≥ 0.
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(B’) If R + S + . . . are arbitrary observables and a, b, . . .

real numbers, then Exp(aR + bS + . . .) = aExp(R) +

bExp(S) + . . . .

• Von Neumann demonstrated on the basis of all these assump-

tions that there exists a linear, semidefinite Hermitian

matrix Umn such that for any observable R

Exp(R) =
∑

UnmRmn = Tr (UR). (1)

• Thus every ensemble in quantum mechanics is characterised

by a statistical operator known as the density operator

(or density matrix).

(Note: Gleason (1957) proofs this also, but requires (B’) only

for commuting observables, Dim(H) ≥ 3.)
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• What are (I) the dispersion free and (II) the homoge-

neous ensembles among the density operators U?

I: What U have Tr(UR2) = [Tr(UR)]2 for all R?

=⇒ No U fulfill this requirement, thus no dispersion free

states exists.

II: He next proofs that homogeneous ensembles do exist:

=⇒ The homogeneous ensembles are the pure quantum states

(one-dimensional projection operators).

I & II =⇒ All ensembles show dispersion, even the homoge-

neous ones.
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∞ Back to the question of ’hidden parameters’ ∞

Can the dispersion in the homogeneous ensembles be explained

by the fact that the states are mixtures of several states, ‘which

together would determine everything causally, i.e., lead to

dispersion free ensembles? ’

Von Neumann:

‘ The statistics of the homogeneous [dispersive] ensembles would

then have resulted from from the averaging over all actual states

of which it was composed [...]. But this is impossible for two

reasons:

First, because then the homogeneous ensembles in question could

be represented as a mixture of two different ensembles, contrary

to its definition.

Second, because the dispersion free ensembles [. . .] do not exist.’

=⇒ Homogeneous ensembles exist that are not dispersion free,

therefore the assumption of the existence of hidden variables is

refuted.
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∞ The argument’s supposed sillyness and the standard view ∞

John Bell paves the way for the standard view

In 1964 (published 1966) John Bell intended to show what the

problem with von Neumann’s argument was, after he ‘saw the

impossible done’. He tracked it down to the assumption (B’):

Exp(aR + bS) = aExp(R) + bExp(S). (2)

This relation holds true for quantum mechanics, irrespective

of whether the operators R and S commute.

• Bell reasons: It is required by von Neumann of the hypo-

thetical dispersion free states also. But for a dispersion free state

the expectation value must equal one of the operator’s eigen-

values. But eigenvalues do not generally combine linearly.

Example: (σx + σy) with eigenvalues ±
√

2

σx, σy, with eigenvalues ±1.

In some cases the addivity of expectation values gives the

requirement for additivity of eigenvalues. The latter is gen-

erally not true.
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John Bell:

‘The essential assumption can be criticized as follows. [. . .] A

measurement of a sum of noncommuting observables cannot be

made by combining trivially the results of separable observations

on the two terms – it requires a quite distinct experiment. [. . .]

But this explanation of the nonadditivity of allowed values also

established the nontriviality of the additivity of expectation val-

ues. The latter is quite a peculiar property of quantum mechan-

ical states, not to be expected a priori.’ (Bell, 1964 (1966))

‘. . . for the individual results are eigenvalues and eigenvalues of

linearly related operators are not linearly related. [. . .] His very

general and plausible postulate is absurd.’ (Bell, 1982)

The once superior proof becomes allegedly silly.

’A third of a century passed before John Bell, 1966, rediscov-

ered the fact that von Neumann’s no-hidden-variables proof was

based on an assumption that can only be described as silly – so

silly, in fact, that one is led to wonder whether the proof was

ever studied by either the students or those who appealed to it

to rescue them from speculative adventures.’

(N. David Mermin, 1993)
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’Yet the von Neumann proof, if you actually come to grips with

it, falls apart in your hands! There is nothing to it. It’s not just

flawed, it’s silly ! . . . When you translate [his assumptions] into

terms of physical disposition they’re nonsense. You may quote

me on that: The proof of von Neumann is not merely false but

foolish !’ (John Bell, 1988, as cited by N. David Mermin.)

The Standard View

N. David Mermin considers the assumption:

v(A + B) = v(A) + v(B) (3)

‘Von Neumann’s silly assumption was to impose the condition on

a hidden variables theory even when A and B do not commute.’

(N. David Mermin, 1993)

• Almost all discussions of von Neumann’s argument use this

value addition rule as an assumption he is supposed to have

made.

The Kochen-Specker theorem (1967) is indeed phrased in terms

of values. They require v(f(A)) = f(v(A)) from which the ad-

ditivity rule for values for commuting A and B follows.
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However, von Neumann did explicitly not use the additivity

rule for values of noncommuting observables as an assumption.

‘In general we call two (or more) quantities R, S simultaneously

measurable if there is an arrangement which measures both si-

multaneously in the same system [. . . ] Fur such quantities, and a

function f(x, y) of two variables, we can also define the quantity

f(R,S). This is measured if we measure R, S simultaneously

– if the values a, b are found for these, then the value of f(R,S)

is f(a, b). But it should be realised that it is completely mean-

ingless to try form f(R,S) if R, S are not simultaneously mea-

surable: there is no way of giving the corresponding measuring

arrangement.

However, the investigation of the physical quantities related to

a single object S is not the only thing which can be done – espe-

cially if doubt exist relative to the simultaneous measurability of

several quantities. In such cases it is also possible to observe great

statistical ensembles which consist of many systems. In such an

ensemble we do not measure the ”value” of a quantity R but its

distribution of values. [. . .] Even if two (or more) quantities R,

S in a single system S are not simultaneously measurable, their

probability distributions in a given ensemble can be obtained with

arbitrary accuracy if N is sufficiently large.’

(J. von Neumann, page 298, 1955 English translation)
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∞ The argument is not silly yet unconvincing ∞

• The argument is not silly. Von Neumann nowhere uses

additivity of eigenvalues as an assumption. It is a result of the

additivity of expectation values and the fact that for dispersion

free states (the ones he considers) expectation values happen to

be equal to the numerical value of the eigenvalues.

What did Bell show us?

‘Bell clarified the situation by pointing out that it was not the

”objective verified predictions of quantum mechanics”, but rather

his arbitrary additivity assumption, postulated to be also valid

for dispersion free states, that precluded the possibility of hidden

variables.’ (Max Jammer, 1974)

This is wrong. The assumption doesn’t preclude it, it shows

that the argument trivially proofs that the hidden variables

subject to his assumptions are not possible.

• It shows that the proof is trivial in the case all the dis-

persion free states are required to be of the form U (a density

operator) . Thus there exist no dispersion free quantum states.
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The argument is unconvincing .

• The additivity rule for expectation values in the case of in-

compatible observables cannot be justified in the light of the

Bohrian point that contexts of measurement play a role

in defining the nature of quantum reality.

‘There is no reason to demand it individually of the hypothetical

dispersion free states . . .’ (Bell, 1964). And thus there is no rea-

son to demand that the dispersion free states are of the form of

a density operator U .

This is ironic in two senses:

1) It is a sort of judo-like manouvre (Abner Shimony, 1984):

A Bohrian consideration saves hidden variables against von

Neumann. ‘[Bell] cited Bohr in order to vindicate a family of

hidden variables theories . . .’ (Jammer, 1974):

‘[The assumption] is seen to be quite unreasonable when one

remembers with Bohr ”the impossibility of any sharp distinction

between the behaviour of atomic objects and the interaction with

the measuring instruments which serve to define the conditions

under which phenomena appear.”’ (Bell, 1964)
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2) The additivity rule, although it has no justification, neverthe-

less does hold true in quantum mechanics. It is thus surprising

that it holds true.

A priori no statistical results can be expected between Exp(R)

andExp(S). The additivity holds because ‘it so happens that

the other axioms and postulates of quantum theory conspire to

make Exp(R) expressible at
∫
ψ∗Rψ dx.’ (Belinfante, 1973).

That the additivity rule holds is because of the accidental fact

that Exp(R) = 〈φ|R |φ〉 in quantum mechanics and therefore

that (pure case):

〈φ| (R + S) |φ〉 = 〈φ|R |φ〉 + 〈φ|S |φ〉 . (4)

Conclusion: It doesn’t count against the theorem that the

nonexistence of dispersion free states is so easy to prove in the

case of the hidden variables he considers (A lot easier than von

Neumann thought). The real issue is his notion of hidden

variable and the plausibility of the premisses in the proof.
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∞ Grete Hermann’s critique on von Neumann’s argument ∞

Grete Hermann published in 1935 a treatise called ’Die Natur-

philosophischen Grundlagen der Quantenmechanik’, published in

the Abhandlungen der Fries’schen Schule.

• Section 7: ‘The circularity of von Neumann’s proof.’,

page 99:

Exp(R + S) = Exp(R) + Exp(S) (5)

‘With this assumption the proof of von Neumann either succeeds

or fails.’

Grete Hermann gives rise to all that John Bell had concluded

(but with a different argument):

1) Hermann concluded, just like Bell, that von Neumann pre-

cluded the non-existence of dispersion free states because the

additivity rule is too restrictive.

2) She commented upon the problematic status of the addi-

tivity rule in the light of the impossibility of simultaneous mea-

surement of noncommuting observables.
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ad 2): ‘Not trivial however is the relation for quantum mechani-

cal quantities for which indeterminacy relations hold. In fact, the

sum of two such quantities is not even defined: Because sharp

measurement of one of them excludes sharp measurement of the

other one and thus both quantities cannot have sharp values at

the same time, the commonly used definition of the sum of two

quantities brakes down.

Thus, for the above determined notion of a sum of two, not

jointly measurable quantities, the above mentioned equation re-

quires a proof. [. . .]Von Neumann concludes that for ensembles of

systems with identical wave functions, and also for all ensembles,

the sum rule for expectation values holds, even for such quanti-

ties that cannot be measured simultaneously.’

(Grete Hermann, page 100, 1935 (my translation))

ad 1): To interpret the pure case |φ〉 ensembles to be the dis-

persion free states for which Exp(R) = 〈φ|R|φ〉 must hold, is

to restrict further specification of the state by hidden variables.

‘The impossibility of such a specification is just the thesis to

be proved.’ She regards the proof circular.

The right conclusion is not that this precludes hidden variables

(just like Bell did), but that the proof holds only for a limited

class of hidden variables, namely those that obey (B’).
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Grete Hermann, 1901-1984.
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∞ The reception of her work ∞

With hindsight we can say that Grete Hermann was ahead of

her time. Only really after John Bell (1964) the limited appli-

cability of von Neumann’s proof becomes known.

Heisenberg and von Weizsäcker surely knew of her criticism.

Why was her criticism ignored at the time?

1. Von Neumann’s proof was sort of holy:

‘The truth, however, happens to be that for decades nobody

spoke up against von Neumann’s arguments, and that his con-

clusions were quoted by some as the gospel.’ (F. J. Belinfante,

1973)

‘Now the mere mention of concealed variables is sufficient to auto-

matically elicit from the elect the remark that John von Neumann

gave absolute proof that this way out is not possible. To me it

is a curious spectacle to see the unanimity with wich the mem-

bers of a certain circle accept the rigor of von Neumann’s proof’

(Bridgman, 1960)
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‘He [Bohr] came for a public lecture.... At the end of the lecture

he left and the discussion proceeded without him. Some speakers

attacked his qualitative arguments –there seems lots of loopholes.

The Bohrians did not clarify the arguments; they mentioned the

alleged proof by von Neumann and that settled the matter.[...].

Yet, like magic, the mere name of ”von Neumann” and the mere

word ”proof” silenced the objectors.’ (Feyerabend)

2. No english translation was available of von Neumann’s book

untill 1955.

3. Grete Herman published her treatise in a not well known

series of books. The summary that appeared in 1935 in the good

and well-read journal ’Die Naturwissenschaften’ did not contain

the argument against von Neumann, but only her Kantian ideas.

Why is her criticism still not known?

1. Her treatise is still not translated into English.

2. Max Jammer doesn’t mention her in connection to Bell’s

criticism on von Neumann’s argument.
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3. People who mention Grete Hermann’s criticism only mention

what Jammer wrote. One exception is Lena Soler, but she wrote

about her in French.

4. Von Neumann’s argument itself is not widely studied:

‘A book more frequently referred to than read by physicists be-

cause of its mathematical sophistication.’ (Redhead, 1987)

‘Well, I suppose that they regard von Neumann’s book as a per-

fectly adequate formal treatment for pedants, people who like

that sort of thing [formal mathematics]. They wouldn’t read it

themselves but they’re glad somebody has done all that hard

work!’ (Bastin, 1977)

5. James Albertson (1961) in his accessible and therefore well-

studied Dirac-formulation of the proof is not critical at all and

relegates all assumptions, including the problematic one, to an

appendix.
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∞ What actually does the argument tell us ∞

Von Neumann proofs that a certain limited class of hidden vari-

ables is excluded. Those that obey his assumptions. He himself

thought he was completely general and unrestrictive.

‘Nevertheless, under all circumstances,Exp (R + S) = Exp (R) +

Exp (S).’ (von Neumann, 1955)

• Why? Because it holds true in quantum mechanics:

‘In each state φ the expectation values behave additively: (Rφ, φ) +

(Sφ, φ) = ((R + S)φ, φ). The same holds for several sum-

mands. We now incorporate this fact into our general set-up

(at this point not yet specialized to quantum mechanics).’ (von

Neumann, 1955)

• Von Neumann assumes that all Exp(R) for hidden variables

must arise from the assumptions he has made. This can be con-

tested since (B’) is very much questionable. It is unreasonable

to require it of the dispersion free states as represented by mea-

sures on a classical probability space. It can be required only for

those probability measures corresponding to the statistical states

of quantum mechanics.
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• Von Neumann does not consider averaging over the dis-

persion free states to reproduce quantum mechanics, contrary to

what he claims he does.

We can get the homogeneous ensembles with dispersion that

quantum mechanics predicts by using dispersion free hidden vari-

ables as a classical probability measure and averaging over

them.

Exp(R)U = Tr [UR] =

∫
R[λ] ρU(λ) dλ (6)

On a two-dimensional Hilbert space Bell gave an example of this.
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What does the proof tell us?

(I): It excludes hidden variables where each hidden variable

state must reproduce quantum mechanics. Quantum states can-

not be represented as one-point measures on the hypothetical

phase space. Necessarily we need a richer theory. Thus

only when averaged over, can the hidden variables reproduce

quantum mechanics.

• The richer theory. To a particular quantum state U more

hidden variable states correspond, a distribution ρ(λ). Of course

the ρ’s have to give the same expectation values as U does for all

quantum mechanical observables. But it can even be so that the

hidden variables theory has new physical quantities (such as λ

itself), that have different expectation values in the different ρ’s

that correspond to the single U .

(II): The issue is not that we require additivity for eigenval-

ues (the so-called ‘silly’ assumption), but that because von Neu-

mann’s conception of hidden variables is too restricted, that (B′)

becomes required of dispersion free hidden variable states and

thus phrased in terms of eigenvalues.
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Happy End

Max Jammer comments on the fact that the proof, although ‘did

not demonstrate that quantum mechanical ensembles cannot be

decomposed into any kind of dispersion-free states’, can nev-

ertheless not be dismissed as ’nugatory’. ‘True, in view of von

Neumann’s excessively restrictive assumptions it is not an impos-

sibility proof of any conceivable class of hidden variables, but it

is a completeness proof since this formalism with the inclusion

of the additivity postulate does not admit non-quantum mechan-

ical ensembles. It may even be regarded a consistency proof of

this formalism with its usual interpretation.’ (Jammer, 1974)

27


