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Abstract. Bell’s theorem is a no-go theorem stating that quantum mechanics
cannot be reproduced by a physical theory based on realism, freedom to choose
experimental settings and two locality conditions: setting (SI) and outcome (OI)
independence. We provide a novel analysis of what it takes to violate Bell’s
inequality within the framework in which both realism and freedom of choice
are assumed, by showing that it is impossible to model a violation without
having information in one laboratory about both the setting and the outcome
at the distant one. While it is possible that outcome information can be revealed
from shared hidden variables, the assumed experimenter’s freedom to choose the
settings ensures that the setting information must be non-locally transferred even
when the SI condition is obeyed. The amount of transmitted information about
the setting that is sufficient to violate the CHSH inequality up to its quantum
mechanical maximum is 0.736 bits.
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Bell’s inequalities are certain constraints on correlations between space-like separated
measurements that are satisfied in any local realistic theory [1]. The inequalities are violated
by quantum predictions for some entangled states. The usual set of assumptions invoked in
the derivation of Bell’s inequalities comprises realism, the experimenter’s freedom to choose
the measurement settings (‘freedom of choice’) and two locality conditions: setting
independence (SI) and outcome independence (OI) [2]–[4]. Maintaining realism and freedom
of choice thus necessitates an exchange of information between distant measurement stations
that defies locality so as to violate one (or both) of the independence conditions. What kind and
amount of information has to be transferred between the stations to model the violation of Bell’s
inequalities? Is it information about the distant outcome, or about the distant setting, or about
both? These questions will be addressed in the present paper from an information theoretical
perspective, thereby providing a novel analysis of what it takes to violate Bell’s inequality.

While we see other possibilities than maintaining realism and freedom of choice, and
introducing non-local actions to interpret the implications of Bell’s theorem, we acknow-
ledge the importance of exploring alternative descriptions to deepen our understanding
of the foundations of quantum theory. In addition to fundamental reasons, answering the
above questions is important in quantum information, such as, for example, in quantum
communication complexity problems [5]. The question of how much setting and/or outcome
information needs to be exchanged in a Bell experiment for a given degree of violation is
relevant to quantify the classical resources required to simulate quantum efficiency in these
problems.

In this work, we assume realism and freedom of choice, and we study non-local hidden-
variable models with one-way communication between two separated observers, conventionally
called Alice and Bob. Clearly, communicating a distant setting allows the simulation of violation
of Bell’s inequality. For example, we could let Bob’s outcome be determined by a shared hidden
variable, and we could have Alice’s outcome depend not only on her local setting and the
shared hidden variable, but also on Bob’s setting. In this way, any set of correlations could be
modeled because, at Alice’s location, there is information about all the outcomes and settings
that are involved.

Here we show that information about a distant setting and outcome is not only sufficient to
simulate violation of Bell’s inequality but also necessary. This is contrasted with the well-known
condition [3, 4] that either OI or SI for (hidden-variable) conditional probabilities can still be

obeyed in models producing a violation of Bell’s inequality. Note that it is not a contradiction
that for a violation of Bell’s inequality (I) both distant setting and outcome information must
be locally available and (II) OI or SI can still be fulfilled. This is because (I) and (II) refer to
different notions. For instance, OI is obeyed when the conditional (hidden variable) probability
of Alice’s outcome does not explicitly depend on Bob’s outcome. However, the information
about Bob’s outcome can still be implicitly contained in the shared hidden variable. This allows
for a novel analysis of what it takes to violate Bell’s inequality.

Furthermore, we show that, while it is possible that information about the distant outcome
can be read from the hidden variables received from the source, information about the setting
must be non-locally transmitted, implicitly or explicitly, in any model where the experimenters
are free to choose their settings. We are able to trace this asymmetry between setting
and outcome information to the freedom of the experimenters to choose their settings. We
furthermore apply our analysis to the non-local hidden-variable models of Toner and Bacon [6],
Leggett [7] and Bohm [8]. Finally, we show that the amount of transmitted information about
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the setting that is sufficient to violate the Clauser–Shimony–Holt (CHSH) inequality up to its
quantum mechanical maximum is 0.736 bits.

We begin with the usual formal definitions of the assumptions of Bell’s theorem. In our
notation, a and b stand for the measurement settings chosen by the two distant experimenters
Alice and Bob, respectively; A and B denote their respective measurement outcomes, and λ
denotes a set of hidden variables.

(i) For stochastic (probabilistic) hidden-variable theories, the assumption of realism

dictates that the hidden variable λ specifies joint (non-negative, properly normalized)
probabilities P(A1,1, A1,2, A2,1, ..; B1,1, B1,2, B2,1, ..|λ), where, for example, the result A1,2 of
Alice for her setting choice 1 can depend on some non-local parameter 2, typically Bob’s setting
choice. The conditional probabilities P(A, B|a, b, λ) that will be used in this paper are then
obtained as marginals of these joint ones.

(ii) SI, often also called parameter independence [3], is the part of the locality condition that
prohibits the conditional dependence of the probability to obtain the outcome in one laboratory
on the choice of the setting at the other one: P(A|a, b, λ) = P(A|a, λ), and analogous for
P(B|·). Similarly, under OI, Alice’s probability of obtaining her outcome does not conditionally
depend on Bob’s outcome, and vice versa: P(A|a, b, B, λ) = P(A|a, b, λ), again analogous
to P(B|·). The conjunction of these two conditions is equivalent to Bell’s condition of local
causality [2]–[4], [9]: P(A, B|a, b, λ) = P(A|a, λ)P(B|b, λ). The latter condition allows us
to define the joint probabilities from (i) as p(A1, A2|λ)p(B1, B2|λ), where, for example, A1 is
the result of Alice for her setting choice 1 [10]. Note that fulfillment of SI does not imply that
P(A|a, b, B, λ) equals P(A|a, B, λ). This shows that SI does not entail complete independence
from the distant setting and that different criteria should be used.

(iii) The experimenter’s freedom of choice to choose the measurement setting ensures that
the selected measurement setting is statistically independent of the hidden variables sent by the
source (even in a deterministic model) [11, 12]. In terms of the (Shannon) mutual information,
this assumption is expressed as I (λ : a) = I (λ : b) = 0. As we will show, the assumption of
freedom of choice is responsible for the fundamental asymmetry between settings and outcomes
because it guarantees that the settings, contrary to the outcomes, are considered as independent
variables.

Under these three assumptions, the CHSH inequality [13] must be obeyed,

1
4

1�

a,b=0

P(A ⊕ B = ab|a, b)� 3
4
, (1)

with ⊕ denoting addition modulo 2. We let Alice and Bob each choose with 50% probability one
of two settings, a, b = 0, 1, and obtain measurement results, A, B = 0, 1, respectively. (Both
sides in inequation (1) are divided by 4 for later convenience.)

Assuming freedom of choice and realism, violations of the CHSH inequality imply
that either OI or SI, or both, needs to be given up. In the framework of ‘experimental
metaphysics’ [3], it is violation of the condition OI that is supposed to be responsible for the
violation of the CHSH inequality, and it is extensively argued by many philosophers of this
school that this is not an instance of ‘action at a distance’ but only of some innocent ‘passion
at a distance’: one passively comes to know the faraway outcome, but one cannot actively
change it. In contrast, violation of SI allows superluminal signaling at the hidden variable
level, because the distant observer can freely choose his measurement settings. Our analysis
shows that SI and OI do not provide us with the full picture of what (non-) local information is
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needed in violations of Bell inequalities. Both SI and OI are in fact conditions on the conditional
statistical independence of probabilities for the local outcome only. They do not exhaust all the
possibilities of how information about distant settings and outcomes can be inferred (locally or
non-locally). Here we will provide such an analysis. We thus no longer focus on conditional
statistical independence, but instead on the availability of (non-) local information.

We will show that within the framework of non-local realistic theories it is impossible
to model a violation of the CHSH inequality without having information in one laboratory
about both the setting and the outcome at the distant one. Thus, the availability of non-local
information displayed by models that violate the CHSH inequality is necessarily about both the
non-local settings and the outcomes, despite the fact that it is not necessary that the models are
both explicitly setting dependent (¬ SI) and outcome dependent (¬ OI).

In order to prove our results, we consider a local hidden-variable model augmented by
information available to Alice about Bob’s laboratory. While it is not necessary, it is instructive
to think about this information as one-way classical communication from Bob to Alice. In every
run of the experiment, Alice and Bob first choose their settings (a and b) and receive hidden
variables λ, which are independent of the choice of the settings. Then, Bob (or some process
in his laboratory) generates the outcome B, which in general depends on λ and b. Next, Bob
generates the message X , which depends on λ, b and B. The generation of B and the generation
of X are, in general, probabilistic processes. It is assumed that the exact mechanism of how
B and X are generated is known to Alice. Finally, X is transmitted to Alice, who uses her
optimal strategy, based on the knowledge of her setting a, the shared hidden variables λ, Bob’s
mechanisms and the message X , to produce her outcome A in order to maximally violate the
CHSH inequality.

From Alice’s perspective, the CHSH inequality reads
1
2 P(A = B|a = 0) + 1

2 P(A = B ⊕ b|a = 1)� 3
4 , (2)

where, for example, P(A = B|a = k) is the probability that the outcome of Alice equals that
of Bob, given that she has chosen the kth setting. We shall show that the probabilities entering
inequation (2) can be interpreted as a measure of the information that Alice has about Bob’s
measurement setting and outcome. For this purpose, we introduce the ‘guessed “information” ’
(GI)8,

J (X → Y) :=
�

i

P(X = i) max
j

[P(Y = j |X = i)], (3)

where X takes values i = 1, . . . , X and Y takes values j = 1, . . . , Y . The value of J (X → Y)
gives the average probability of correctly guessing Y knowing the value of X . Its maximum is
1 and then Y is fully specified by X . The minimum of J (X → Y) equals 1

Y
and then X reveals

no information about Y . We note that GI reaches its minimum when the mutual information is
I (X : Y) = 0, and it is maximal when I (X : Y) = log Y . As an example, freedom of choice can
be stated as J (λ → a, b) = 1

4 , i.e. λ cannot reveal any information about the settings a and b.
This implies the weaker condition J (λ → b) = 1

2 , which is sufficient for our analysis, and to
which we refer as freedom of choice throughout the rest of the paper.
8 This measure of information is related to conditional min-entropy. Min-entropy is defined by Hmin(Y ) =
−log(maxP(Y )), and the conditional one reads Hmin(Y |X) =

�
x

P(x)Hmin(Y |x) = −
�

x
P(x) log(max P(Y |x)).

This is just our definition (3), with the only difference being the log function. For this reason, a case could be made
to use the terminology ‘guessed probability’ rather than ‘GI’.
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Alice now uses an optimal maximization strategy so as to maximally violate the CHSH
inequality. Consider the case in which Alice chooses a = 0. Her goal is to maximize the
probability P(A = B|a = 0) given the communicated valueX and the received hidden variables
λ. This maximized probability is just the average probability of correctly guessing B given
X and λ: J (λ,X → B). Similarly, if her setting is a = 1, the maximal probability P(A =
B ⊕ b|a = 1) equals J (λ,X → B ⊕ b). This allows us to phrase the CHSH inequality in terms
of the GIs,

1
2 J (λ,X → B) + 1

2 J (λ,X → B ⊕ b)� 3
4 . (4)

In case Alice’s scheme is not optimal, P(A = B|a = 0) is upperbounded by J (λ,X → B),
and likewise P(A = B ⊕ b|a = 1) is upperbounded by J (λ,X → B ⊕ b). Therefore, even if
Alice’s strategy is not optimal, violation of (4) is necessary for a violation of the CHSH
inequality. This holds for any of the eight different CHSH inequalities.

We are now in a position to prove that a necessary condition for the violation of Bell’s
inequalities within non-local realism is that information both about the setting and about the
outcome produced at one laboratory must be available at the distant laboratory. If there is
no outcome information available, i.e. J (λ,X → B) = 1

2 , the left-hand side of inequation (4)
cannot exceed 3

4 . To prove that setting information is also necessary, note that if one knows both
B and B ⊕ b, one also knows b. Thus, the average probability of correctly guessing b is greater
or equal to the product of the average probabilities of correctly guessing of B and B ⊕ b,

J (λ,X → b)� J (λ,X → B)J (λ,X → B ⊕ b). (5)

If X and λ carry no information about the setting, i.e. J (λ,X → b) = 1
2 , inequation (5) can be

rewritten as J (λ,X → B ⊕ b)� 1
2 J

−1(λ,X → B), which implies

1
2

J (λ,X → B) +
1
2

J (λ,X → B ⊕ b)� 1
2

J (λ,X → B) +
1

4J (λ,X → B)
(6)

for the left-hand side of (4). This value is less than or equal to 3
4 for the whole range of

J (λ,X → B) ∈ [ 1
2 , 1]. Thus, if there is no setting information, the violation of inequation (4),

or inequation (1), is impossible.
Although information both about the distant setting and about the distant outcome must

be available at the local laboratory to have a violation, we show that, given freedom of choice,
information about the distant setting has to be transmitted non-locally, whereas it is possible that
information about the distant outcome can be obtained without any transmission from the shared
hidden variables. This is shown by a further analysis of what information has to be transmitted
via the message X , over and above the information in the hidden variable λ. This also allows us
to analyze the above-mentioned asymmetry between the outcome information and the setting
information in a more formal way.

To this end, we introduce a measure of information that we call ‘transmitted “information” ’
(TI), which is the difference between the averaged probability of correctly guessing the value of
the variable Y when knowing X and λ, and the probability when knowing only λ,

�λ(X → Y) := J (λ,X → Y) − J (λ → Y). (7)

�λ(X → Y) takes values between 0 and 1 − 1
Y

. Its lowest value means that transmission of
X does not increase Alice’s chances of guessing the correct value of Y; X carries no new

information about Y that is not already available to Alice through λ.
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We have already established that either J (λ,X → B) = 1
2 or J (λ,X → b) = 1

2 implies no
violation of the CHSH inequality. The asymmetry between the outcome and setting information
originates from the freedom of choice assumption J (λ → b) = 1

2 , which leads to

J (λ,X → b) = �λ(X → b) + 1
2 . (8)

We see that �λ(X → b) = 0 leads to J (λ,X → b) = 1
2 , which means no violation of the CHSH

inequality. On the other hand, there is no assumption corresponding to freedom of choice
regarding the outcomes, i.e. there are no physical grounds for assuming J (λ → B) = 1

2 . Instead,
one has

J (λ,X → B) = �λ(X → B) + J (λ → B). (9)

Thus, even if �λ(X → B) = 0, it is possible that J (λ,X → B) > 1
2 , if J (λ → B) > 1

2 . Also,
J (λ → B) = 1

2 does not mean that J (λ,X → B) = 1
2 since �λ(X → B) can be greater than

0. Summing up, neither �λ(X → B) = 0 nor J (λ → B) = 1
2 individually implies no violation

of the CHSH inequality, although both of them together do. One can easily construct a toy
model9 where J (λ → B) = 1

2 and violation occurs because the TI is �λ(X → B) = 1
2 . A toy

model where �λ(X → B) = 0 and violation occurs is presented later. All the different cases are
presented in table 1, where our technical results are also contrasted with those in terms of the
conditions OI and SI.

To reinforce our conclusion that the freedom of choice assumption is responsible for the
asymmetry, consider the possibility of ‘superdeterminism’, where everything is determined by
the hidden variables, even the setting choices. In that case, both J (λ → b) = 1 and J (λ →
B) = 1, and consequently we have both �λ(X → b) = 0 and �λ(X → B) = 0. In that case
there simply is no new information to be transferred, i.e. X is redundant as λ determines all
there is to know. Settings and outcomes thus here appear on an equal footing, and the conditions
for violation of the CHSH inequality become identical for both. Indeed, only by giving up
superdeterminism and allowing for freedom of choice for the settings do we see the asymmetry
between settings and outcomes arise. The assumption of freedom of choice of the settings
ensures that, in order to get a violation of the Bell inequality, the message X must contain
information about the setting, either implicit or explicit (although note that SI can be satisfied).
It is, however, not necessary that it carries information about the outcome.

Now we study explicit examples of non-local realistic models that violate the CHSH
inequality. In all of them the non-local information X is information about the distant setting.

Consider the model of Toner and Bacon [6]. One of the parties sends the bit X = ±1,
which is given by X = sgn(�b · �λ1) sgn(�b · �λ2), where �b is a unit Bloch vector corresponding to
Bob’s setting, and �λ1 and �λ2 are also unit vectors, which play the role of hidden variables.
The communication in this model can be compressed to C ≈ 0.85 bits [6]. Exactly the same
value is obtained for the mutual (Shannon) information between the bit sent and the setting,
I (X : �b) = C .
9 A random binary hidden variable λ = 0, 1 is distributed to Alice and Bob. Bob’s result for setting b is defined
as B = λ ⊕ b. Next, he communicates his outcome, X = B. The result of Alice is given by A = a(X ⊕ λ) ⊕X .
Thus J (λ,X → B) = 1 and J (λ → B) = 1

2 . Clearly, A ⊕ B = ab, and the CHSH inequality is maximally violated.
However, there is intrinsic setting information in this model because Alice can read the setting of Bob from the
data available to her, b = X ⊕ λ; and thus J (λ,X → b) = 1 as well. This is what allows violation of the CHSH
inequality. Note that this model is deterministic and thus obeys OI (and violates SI), despite the fact that it is the
outcome B that is being communicated.
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Table 1. The possibility of violation of the CHSH inequality in a local
realistic model augmented by the communication of X from Bob to Alice.
J (λ,X → b) and J (λ,X → B) are the ‘guessed “information” ’ (GI) by Alice,
where λ denotes the hidden variables, and b and B are Bob’s setting and
outcome, respectively. �λ(X → b) and �λ(X → B) denote the ‘transmitted
“information” ’ (TI) to Alice about Bob’s setting and outcome, respectively,
which is communicated via X . (See the main text for their definitions.) ‘No’
in the right column means that the corresponding condition has to be violated to
allow violation of the CHSH inequality. ‘Yes’ means that there are models that
satisfy the condition and violate the CHSH inequality. The starred ‘Yes∗’ in rows
4 and 6 indicate that for a violation either one of these conditions can hold, but
not both. Similar is true for the doubly starred ‘Yes∗∗’ in rows 7 and 8, where
for completeness we have included the previously known results in terms of
SI and OI.
Condition Violation of CHSH possible?

J (λ,X → b) = 1
2 No

J (λ,X → B) = 1
2 No

J (λ → b) = 1
2 Yes (‘freedom’)

J (λ → B) = 1
2 Yes∗

�λ(X → b) = 0 No
�λ(X → B) = 0 Yes∗

SI: P(A|a, b, λ) = P(A|a, λ) Yes∗∗

OI: P(A|a, b, B, λ) = P(A|a, b, λ) Yes∗∗

The model of [6] perfectly simulates all possible measurement results obtained on the
singlet state. If one aims at simulation of the maximal violation of the CHSH inequality (with
four fixed settings) allowed by quantum mechanics, then less communication is needed, as
shown in the following toy model with �λ(X → B) = 0. A binary random variable λ = 0, 1 is
distributed from the source to Alice and Bob. His outcome for any choice of the setting is defined
as B = λ, implying J (λ → B) = 1 and thus J (λ,X → B) = 1 and �λ(X → B) = 0. If Bob’s
setting is b = 0, he sends always X = 0; if his setting is b = 1, he sends X = 1 with probability
p =

√
2 − 1 ≈ 0.414 and X = 0 otherwise. The outcome of Alice is given by A = aX ⊕ λ. In

this model, it is the information about the setting of Bob that is communicated: the information
content of X is 0.736 bits and this is the mutual information I (X : �b) between X and the setting
of Bob. Note that classical players exchanging this amount of information achieve efficiency
of quantum solutions to communication complexity problems and games based on the CHSH
inequality [5].

In the Leggett-type [7] non-local model of [14], a real unit vector, i.e. an infinite number of
bits, parameterizing the setting is being sent from one party to another; thus �λ(X → b) > 0.
Note that this model violates SI but obeys OI because it is deterministic [2].

Our last example is Bohm’s theory [8]. Although here there is no explicit communication
process, the specific dynamics of this theory allow setting information to be non-locally
available. The information about the setting of the apparatus in one laboratory enters the
formula for the velocity of the particle in the other laboratory. The analysis of the double
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Stern-Gerlach experiment shows that the velocity of one of the particles is given by the
equation [15] v1 = c1 tanh(c2κ), where κ is a parameter that describes the ratio between the
magnetic field strengths at the two distant laboratories. The constants c1 and c2 do not depend
on κ . Therefore, the local measurement outcome and the knowledge about the velocity would

allow us to infer the distant setting. Since tanh is an injective function, to determine v1, all the
bits defining κ have to be known to the mechanism that generates this velocity.

This last example shows that there need not be an actual communication process and our
results are valid outside the one-way communication paradigm. Indeed, it is irrelevant for our
results how Alice obtained the information X ; one can think of it as extra information about
Bob’s situation and which is somehow available to Alice.

In conclusion, this work provides the general conditions that every non-local hidden-
variable theory has to satisfy in order to allow for violation of the CHSH inequality. For there
to be such a violation it must be the case that information about both the outcome and the
setting at one laboratory is available at the distant one, despite the fact that there is no need

for both non-local setting and outcome dependence in the conditional (hidden) probabilities.
The role of the setting is shown to be fundamentally different from that of the outcome, and
this asymmetry is shown to be due to the assumption of the experimenter’s free setting choice.
Because of this freedom, the only way to learn a distant setting is to have non-local information
transferral. By contrast, it is possible that the distant outcome can also be learnt from the shared
hidden variables, without any such non-local information transferral. The necessity that—within
hidden variable models and freedom of choice—information about freely chosen distant settings
has to be available in a space-like separated way seriously questions the possibility of Lorentz-
invariant completion of quantum mechanics. This remark applies to both deterministic [16] and
stochastic models and clearly goes beyond what can be concluded on the basis of an analysis
using only the conditions SI and OI.
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Brukner Č et al 2004 Phys. Rev. Lett. 92 127901
[6] Toner B F and Bacon D 2003 Phys. Rev. Lett. 91 187904
[7] Leggett A J 2003 Found. Phys. 33 1469
[8] Bohm D 1952 Phys. Rev. 85 166

Holland P R 1993 The Quantum Theory of Motion (Cambridge: Cambridge University Press)

New Journal of Physics 12 (2010) 083051 (http://www.njp.org/)



9

[9] Bell J S 1976 Epistemol. Lett. 9 Reprinted in 1985 Dialectica 39 85
[10] Fine A 1982 Phys. Rev. Lett. 48 291
[11] Bell J S 1985 Dialectica 39 103
[12] Kofler J, Paterek T and Brukner Č 2006 Phys. Rev. A 73 022104
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