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I: Bell inequality & Local commutativity

Consider the well known Bell operator:

B := A ⊗ (B + B′) + A′ ⊗ (B − B′). (1)

For the set of separable states Dsep we have
|〈B〉ρ| ≤ 2, whereas for the set of all (possibly
entangled) quantum states D we get the Tsirelson
inequality:

|〈B〉ρ| ≤
√

4 + |〈[A, A′] ⊗ [B′, B]〉ρ| ≤ 2
√

2. (2)

Consider qubits on H = C
2 ⊗C

2 and general spin
observables, e.g. A = a ·σ =

∑

i aiσi. Denote by θA

the angle between A and A′ (i.e., cos θA = a · a′)
and analogously for θB. Then we have:
• Local commutativity ([A,A′] = [B,B′] = 0)
implies θA = θB = 0 (mod. π), i.e. parallel
observables.
• Local anticommutativity ({A,A′}={B,B′} = 0)
implies θA, θB =±π/2, i.e. orthogonal observables.

Maximal violation =⇒ local anti-commutativity

To get maximal violation of (2) we need:

|〈[A, A′]⊗[B′, B]〉ρ| = 4|〈(a×a
′)·σ⊗(b×b

′)·σ〉ρ| = 4.

This can equal 4 only if ||a × a
′|| = || b × b

′|| = 1,
which implies that a · a′ = 0 and b · b′ = 0.

Thus maximal violation is only possible if the
local observables are orthogonal, i.e.,
θA = θB = π/2, and to get any violation at all it is
necessary that the local observables are at some
angle to each other, i.e., θA 6= 0, θB 6= 0.

Inspired by this, we seek a trade-off relation
that expresses exactly how the amount of
violation depends on the local angles θA, θB

between the spin observables. We thus seek the
form of

C(θA, θB) := max
ρ∈D

|〈B〉ρ| (3)

Local anti-commutativity and separable states

For separable states ρ ∈ Dsep and local
orthogonal observables the following separability
inequality holds [2]:

〈B〉2
ρ + 〈B′〉2

ρ ≤ 2〈1⊗ 1−A′′ ⊗ B′′〉2
ρ−

2〈A′′ ⊗ 1− 1⊗ B′′〉2
ρ, (4)

with the A′′ = i[A,A′]/2 and B′′ = i[B,B′]/2 and
where B′ is the same as B but with A ↔ A′ ,
B ↔ B′. Note the strength of (4). If it holds for all
sets of local orthogonal observables it is necessary
and sufficient for separability [2].

From (4) we get the following separability
inequality for all states in Dsep:

|〈B〉ρ| ≤
√

2(1 − 1

4
|〈[A, A′]〉ρ1

|2)(1 − 1

4
|〈[B,B′]〉ρ2

|2),
(5)

where ρ1 and ρ2 are the single qubit states.
The inequality (5) is the separability analogue

for anti-commuting observables of the Tsirelson
inequality (2). Note that even in the weakest case
(〈[A,A′]〉ρ1

= 〈[B, B]〉ρ2
= 0) it implies |〈B〉ρ| ≤

√
2,

which strengthens the original Bell-CHSH
inequality.

Thus we see a reversed effect: in contrast to
entangled states, the requirement of
anticommutivity (i.e., local orthogonality of the
observables) thus decreases the maximum
expectation value of B for separable states.

Inpired by this, we look for a trade-off relation
that expresses exactly how the maximum bound
for 〈B〉ρ depends on the local angles of the spin
observables in the case of separable states. We
thus seek the form of

D(θA, θB) := max
ρ∈Dsep

|〈B〉ρ|. (6)

II: Tradeoff relations

General qubit states

C(θA, θB) =
√

4 + 4| sin θA sin θB|. (7)

This is plotted in Fig 1.
If both angles are chosen the same, i.e.,

θA = θB := θ, (7) simplifies to

C(θ, θ) =
√

4 + 4 sin2 θ, (8)

which is plotted in Fig 3.

Separable states

D(θA, θB) =

∣

∣

∣

∣

W+(1 + X2
±)−1/2

+ cos(arctan(X±) − θA) W−

∣

∣

∣

∣

, (9)

with W±, X±, Y and Z complicated functions of
θA, θB, see [1]. The function (9) is plotted in Fig.2.

As a special case, suppose we choose
θA = θB := θ. Then, (9) reduces to the much
simpler expression

D(θ, θ) = cos θ +
√

1 + sin2 θ. (10)

This result strenghtens the bound obtained
previously by Roy [3] for this special case. Both
bounds are shown in Fig 3.
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Fig. 1: Plot of C(θA, θB) = maxρ∈D |〈B〉ρ| as given in
(7) for 0 ≤ θA, θB ≤ π.
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Fig. 2: Plot of D(θA, θB) := maxρ∈Dsep
|〈B〉ρ| as given

in (9) for 0 ≤ θA, θB ≤ π.
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Fig. 3: Plot of (8) (dashed line) and (10) (uninter-
upted line), and Roy’s bound [3] (dotted line).
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Fig. 4: Violation factor X (uninterupted line) and
XCHSH (dashed line) for θA = θB := θ.

III: Discussion

We have obtained tight quantitative expressions
for two trade-off relations [1].

(1): Between the degrees of local commutativity,
as measured by the local angles θA and θB, and
the maximal degree of Bell-CHSH inequality
violation.

(2): Secondly, a converse trade-off relation holds
for separable states: if both local angles increase
towards π/2, the value obtainable for the
expectation of the Bell operator decreases. (The
non-violation of the Bell-CHSH ineqquality
increases)

The extreme cases are obtained for
anti-commuting (=orthogonal) local observables
where the bounds of 2

√
2 and

√
2 hold.

Foundational relevance

These two trade-off relations show that local
non-commutativity has two diametrically
opposed features:

On the one hand, the choice of locally
non-commuting observables is necessary to allow
for any violation of the Bell-CHSH inequality in
entangled states (a “more than classical” result).

On the other hand, this very same choice of
non-commuting observables implies a “less than

classical” result for separable states: For such
states the correlations obey a more stringent
bound (〈B〉ρ ≤

√
2) than allowed for in local

hidden variable theories (〈B〉LHV ≤ 2).

Experimental relevance

The separability inequalities of Eq. (9) and (10)
can be regarded as entanglement witnesses. They
compare favourably to the Bell-CHSH inequality
as a witness of entanglement. They furthermore
allow for some uncertainty about the precise
observables one is implementing.

Let us define the ’violation factor’ X as the ratio
C(θA, θB)/D(θA, θB), i.e., the maximum correlation
obtained by entangled states divided by the
maximum corelation attainable for separable
states. In Fig. 4 this is plotted for the of equal
angles. This is compared to the ratio by which
these maximal correlations violate the Bell-CHSH
inequality, i.e. XCHSH := C(θ, θ)/2.

The results of Fig. 4 imply that the comparison
of the maximum correlation in entangled states to
the maximum correlations in separable states
yields a stronger witness for entanglement than
its comparison to the Bell-CHSH inequality.
Thus, the separability inequalities (9) and (10)
allow for greater noise robustness (cf. [2]).
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