
Quantum Operations

and Measurement

∞ M.P Seevinck ∞

E-mail: M.P.Seevinck@phys.uu.nl

Utrecht University, The Netherlands, August 2003.

Second version

1



∞ Motivation ∞

. . . it took another 30 years or so [after John Bell’s 1964 paper]

for physicists to realize that entanglement was not so much a

conceptual embarrassment for a respectable physical theory as a

valuable resource that could be exploited to perform tasks im-

possible in the classical world. This realization has led to the

emergence of a new field in quantum physics – or perhaps better,

a new way of doing quantum physics – . . .

Surprisingly, with few exceptions philosophers of physics have

shown little interest in the relevance of these developments to

the conceptual problems of quantum mechanics. In our view, the

new work on quantum information changes the landscape of the

old debate completely . . .

As we see it, the locus of interesting work today on the foun-

dational problems of quantum mechanics is the field of quantum

information. This is were the seeds planted by Bohr and Ein-

stein have finally taken root – the philosopher of science should

be aware of the new garden.

Jeffrey Bub and Chris Fuchs. SHPMP, September 2003.

2



∞ Motivation ∞

• What are the most general dynamics and measurement

operations quantum mechanics allows for?

What do physical constraints, such as locality, imply on the

allowed dynamics?

• I look at formalizing the system dynamics and measurement

dynamics of open quantum systems.

Only discrete dynamics, i.e. only final and initial states

matter. Thus no continuous time-description such as using

master equations.
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∞ Outline ∞

1. The formalism of quantum operations.

2. Three ways of understanding the quantum operation.

3. Elementary operations.

4. Classification using physical constraints.

5. Measurement as a quantum operation.

6. Three examples
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∞ The formalism of quantum operations ∞

Key ideas are two generalizations of the standard formalism:

• Completely positive maps generalize the unitary (free)

evolutions of the standard quantum mechanics. These de-

scribe the most general evolution of open quantum systems.

• The semi-spectral resolution of the identity

generalizes the spectral resolution of the identity.

∑

iMi =
�

generalizes
∑

i Pi =
�
, with PiPj = δijPi.

The first is associated with a positive operator valued mea-

sure (POVM), the second with the well-known orthogonal

resolution A =
∑

i λiPi of a self-adjoint operator A.

Quantum operation: Any physical process that takes a state

ρ of a system on H1 to a state ρ′ on H2. This process is described

by a map E : H1 → H2,

ρ→ ρ′ = E(ρ).
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There are three ways of understanding the quantum operation E .

physically motivated axioms

operator-sum representation

system coupled to environment

I: System coupled to environment

ρ UρU †U

ρ E(ρ)

U

ρenv

System dynamics arises from the free unitary evolution on a com-

posed system. The principal system dynamics is:

E(ρ) = Trenv
[

U(ρ⊗ ρenv)U
†] .

Furthermore, after the evolution it is possible to perform a

projective von Neumann measurement.

This is also called the Stinespring dilation form of E .
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II: operator-sum representation

E(ρ) = Trenv
[

U(ρ⊗ ρenv)U
†]

=
∑

k

EkρkE
†
k ,

Ek are the operation elements or Kraus elements and satisfy:

∑

k

EkE
†
k ≤

�
.

This gives an intrinsic means of characterizing the dynamics

of the principal system. There is no need to consider properties

of the environment.

• Physical interpretation of operator sum representation:

The action of the quantum operation E(ρ) is equivalent to taking

the state ρ and randomly replacing it by

EkρkE
†
k/Tr[EkρkE

†
k] ,

with probability Tr[EkρkE
†
k].

Note: The operator sum representation is not unique.
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III: Physically motivated axioms

1. E(ρ) must act linearly on density matrices so that a mixture

of input states leads to a mixture of output states.

2. E(ρ) must be trace-nonincreasing, because Tr[E(ρ)] is

defined as the probability that the process E(ρ) occurs.

3. E(ρ) must be positive, because since ρ is positive so must

E(ρ) in order for it to be a density matrix.

4. E(ρ) must be completely positive. That is, E ⊗ �
(ρ⊗σ)

must take density operators to density operators.

These four axioms together imply that the operation E(ρ) is

a completely positive trace non-increasing map.

The three approaches to quantum operations are

equivalent:

(A) E(ρ) is a completely positive trace non-increasing map iff it

(i) has a operator sum representation, or

(ii) comes from a unitary evolution and projective mea-

surement on a larger system (Stinespring dilation).
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(B) Any quantum operation can be physically

realized:

(I) Any system - environment model gives rise to an operator

sum representation:

E(ρ) = Trenv
[

U(ρ⊗ ρenv)U
†] =

∑

k

EkρE
†
k,

with Ek := 〈 ek|U | e0〉, where | e0〉 is the initial state of the en-

vironment.

(II) Conversely, a system-environment model can be given for

any operator sum representation. Given a set of operation ele-

ments Ek, define the free evolution U of the composed system

as:

U |ψ〉 | e0〉 :=
∑

k

Ek |ψ〉 | ek〉 .

Then the operator sum representation is realized by U :

E(ρ) =
∑

k

EkρE
†
k = Trenv[U(ρ⊗ | e0〉 〈 e0|)U †]

Note: For trace-decreasing operations and extra projection onto

the environment must be included.
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∞ Elementary operations ∞

The following four elementary operations together imply a

completely positive trace non-increasing map E(ρ):

(i) Unitary transformations:

ρ −→ ρ′ = UρU †

(ii) Von Neumann measurements:

ρ −→ ρ′ =
∑

i

PiρPi

(iii) Adding an uncorrelated system:

ρ −→ ρ′ = ρ⊗ σ

(iv) Dismissal of part Q of a system:

ρ −→ ρ′ = TrQ[ρ]

Theorem: A quantum operation is completely positive iff it can

be composed out of the elementary operations (i) - (iv).
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∞ Classification using constraints ∞

Definition: A class of operations is a set of operations that

is closed under (i) composition, (ii) taking convex sums, (iii) tak-

ing tensor products and furthermore contains the identity.

Constraints on the operations give different classes. Then,

using operational criteria that specify each class, one can deter-

mine if a quantum process meets the specific constraint.

• LOCC operations is the class of local operations plus

two-way classical communication. It consists of composition of

the following two elementary operations

EA ⊗ �
,

� ⊗ EB.

with EA and EB local quantum operations.

Example: A communicates her result α to B, after which B

performs his measurement:

EAB(ρ) = (
� ⊗ EBα ) ◦ (EA ⊗ �

)ρ
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∞ Measurements ∞

Any measurement process can be described in terms of a quan-

tum operation in the following way:

• To the set of possible outcomes {m} from a measurement a

set of quantum operations {Em} is associated.

• Each Em describes the dynamics of the system when outcome

m is found.

• The probability pm of the outcome m is Tr[Em(ρ)] and the

post-measurement state is given by Em(ρ)/ Tr[Em(ρ).

• The total quantum operation E =
∑

m Em is trace preserv-

ing, because the probabilities pm the distinct outcomes sum

to one.
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Examples for measurement operation Em = EmρE
†
m:

(i) von Neumann measurement:

The operation element Em is equal to the projector Pm.

(ii) POVM measurement: A set of operators {Mm}

satisfying

(i) Mm ≥ 0 positivity

(ii)
∑

m

Mm =
�

completeness

(iii) pm = Tr[Mmρ] probability rule

The POVM element Mm is equal to EmE
†
m and the operation is

then given by Em(ρ) =
√
Mmρ

√
Mm.

Implementing the measurement.

A measurement model is possible for implementing the set of

quantum operations Em by performing a unitary evolution

an a larger system and performing a projective measure-

ment on the extra ancillary system.

This will lead to the correct system dynamics, outcome prob-

ability and post-measurement state.
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∞ Examples ∞

(i) Can we create entanglement using only local means?

No, it is a central principle of quantum information theory that

entanglement can not be created using LOCC.

But, can we nevertheless measure entanglement using only

local means? To me this is still an open problem.

Bell measurement is claimed to be localizable using shared ran-

domness. However, only the measurement dynamics on the sys-

tem is implemented and no outcomes are obtained.

(ii) Entanglement as a catalyst.

What states can be locally obtained from some other state? The

mere presence of entangled states allows for otherwise impossi-

ble local transformation to be realized, without the entanglement

being consumed or altered. (Jonathan and Plenio, PRL 83, 3566

(1999))

(iii) Non-locality without entanglement.

Certain observables with only product eigen-states cannot be

measured using LOCC. (Bennett et al. PRA 59, 1070 (1999))
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∞ Conclusion ∞

• The new way of doing quantum physics uses the formalism

of quantum operations. It allows for investigating what pro-

cesses are possible by acting on a system under what specific

constraints.

• Foundational questions can be formulated in this formalism

so that an operational investigation of the problem be-

comes possible.

• We might get fundamental new insights from investigating

what we can and can not do quantum mechanically.

This idea gives rise to the so called thermodynamical

analogy, because from investigating what we can and can

not do thermodynamically we obtain the second law of ther-

modynamics.
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