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By introducing a quantitative “degree of commutativity” in terms of the angle between spin observables we
present two tight quantitative trade-off relations in the case of two qubits. First, for entangled states, between
the degree of commutativity of local observables and the maximal amount of violation of the Bell inequality:
if both local angles increase from zero to � /2 �i.e., the degree of local commutativity decreases�, the maximum
violation of the Bell inequality increases. Secondly, a converse trade-off relation holds for separable states: if
both local angles approach � /2 the maximal value obtainable for the correlations in the Bell inequality
decreases and thus the non-violation increases. As expected, the extremes of these relations are found in the
case of anticommuting local observables where, respectively, the bounds of 2�2 and �2 hold for the expecta-
tion value of the Bell operator. The trade-off relations show that noncommmutativity gives “a more than
classical result” for entangled states, whereas “a less than classical result” is obtained for separable states. The
experimental relevance of the trade-off relation for separable states is that it provides an experimental test for
two qubit entanglement. Its advantages are twofold: in comparison to violations of Bell inequalities it is a
stronger criterion and in comparison to entanglement witnesses it needs to make less strong assumptions about
the observables implemented in the experiment.
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I. INTRODUCTION

In 1964, John S. Bell �1� famously presented an inequality
that holds true for all putative local hidden variable theories
for a pair of spin-1/2 particles but not in quantum mechanics.
In fact, this inequality is satisfied for every separable quan-
tum state, but may be violated by any pure entangled state
�2�.

It is well known that in order to achieve such a violation
one must make measurements of pairs of noncommuting
spin observables for both particles. It is also well known
�thanks to the work of Tsirelson �3�� that in order to achieve
the maximum violation allowed by quantum theory, one
must choose both pairs of these local observables to be an-
ticommuting. It is tempting to introduce a quantitative “de-
gree of commutativity” by means of the angle between two
spin observables: if their angle is zero, the observables com-
mute; if their angle is � /2 they anticommute, which may
thought of as the extreme case of noncommutativity. Thus
one may expect that there is a trade-off relation between the
degrees of local commutativity and the degree of Bell in-
equality violation, in the sense that if both local angles in-
crease from 0 towards � /2 �i.e., the degree of local commu-
tativity decreases�, the maximum violation of the Bell
inequality increases. It is one of the purposes of this manu-
script to provide a quantitative tight expression of this rela-
tion for arbitrary angles.

It is less well known that there is also a converse trade-off
relation for separable states. For these states, the bound im-
plied by the Bell inequality may be reached, but only if at
least one of the pairs of local observables commute, i.e., if at

least one of the angles is zero. It was shown by Roy �4� �see
also Ref. �5�� that if both pairs anticommute, such states can
only reach a bound which is considerably smaller than the
bound set by the Bell inequality, namely, �2 instead of 2.
Thus, for separable states there appears to be a trade-off
between local commutativity and Bell inequality non-
violation. The quantitative expression of this separability in-
equality was already investigated by Ref. �4� for the special
case when the local angles between the spin observables are
equal. It is a second purpose of this manuscript to report an
improvement of this result and extend it to the general case
of unequal angles. As in the case of entangled states men-
tioned above, the quantitative expression reported will be
tight.

Apart from the pure theoretical interest of these two trade-
off relations, we will show that the last one also has experi-
mental relevance. This latter trade-off relation is a separabil-
ity condition, i.e., it must be obeyed by all separable states
and, consequently, a violation of this trade-off relation is a
sufficient condition for the presence of entanglement. Indeed,
this separability condition is strictly stronger as a test for
entanglement than the ordinary Bell Clauser-Horne-
Shimony-Holt �CHSH� inequality whenever both pairs of
local observables are noncommuting �i.e., for nonparallel
settings�.

Furthermore, since the relation is linear in the state � it
can be easily formulated as an entanglement witness �6� for
two qubits in terms of locally measurable observables �7�. It
has the advantage, not shared by ordinary entanglement wit-
nesses �6–8�, that it is not necessary that one has exact
knowledge about the observables one is implementing in the
experimental procedure. Thus, even in the presence of some
uncertainty about the observables measured, the tradeoff re-
lation of this manuscript allows one to use an explicit en-
tanglement criterion nevertheless.
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The structure of this manuscript is as follows. Before pre-
senting the trade-off relations in Sec. III we will review some
requisite background in Sec. II. In Sec. IV we will discuss
the import of the relations obtained.

II. BELL INEQUALITY AND LOCAL COMMUTATIVITY

Consider a bipartite quantum system in the familiar set-
ting of a standard Bell experiment: Two experimenters at
distant sites each receive one subsystem and choose to mea-
sure one of two dichotomous observables: A or A� at the first
site and B or B� at the second. We assume that all observ-
ables have the spectrum �−1,1�. Define the so-called Bell
operator �9�

B ª A � �B + B�� + A� � �B − B�� . �1�

Since �B	�ªTr�B�� is a convex function of the quantum
state � for the system, its maximum is obtained for pure
states. In fact, Tsirelson �3� already proved that max� 
 �B	�

can be attained in a pure two-qubit state �with associated
Hilbert space H=C2 � C2� and for spin observables.

In the following it will thus suffice to consider only qubits
�spin-1 /2 particles� and the usual traceless spin observables,
e.g., A=a ·�=�iai�i, with �a � =1, i=x ,y ,z and �x ,�y ,�z the
familiar Pauli spin operators on H=C2.

For the set Dsep of all separable states, i.e., states of the
form �=�1 � �2 on H=C2 � C2 or convex mixtures of such
states, the following Bell inequality holds, in the form de-
rived by Clauser, Horne, Shimony, and Holt �10�:


�B	�
 � 2. �2�

However, for the set D of all �possibly entangled� quantum
states, a bound for �B	 is given by the Tsirelson inequality
�3,11�


�B	�
 � �4 + 
��A,A�� � �B,B��	�
 . �3�

A. Maximal violation requires local anticommutativity

The Tsirelson inequality �3� tells us that the only way to
get a violation of the Bell-CHSH inequality �2� is when both
pairs of local observables are noncommuting: If one of the
two commutators in Eq. �3� is zero there will be no violation
of Eq. �2�. Furthermore, we see from Eq. �3� that in order to
maximally violate inequality �2� �i.e., to get 
�B	� 
 =2�2� the
following condition must hold �3,12�:


��A,A�� � �B,B��	�
 = 4. �4�

The local observables i�A ,A�� /2 and i�B ,B�� /2 �which are
both dichotomous and have their spectra within �−1,1�� must
thus be maximally correlated.

However, the condition �4� is only necessary for a maxi-
mal violation, but not sufficient. Separable states are also
able to obey this condition while such states never violate the
Bell-CHSH inequality. For example, choose A=B=�y, A�
=B�=�x. This gives �A ,A�� � �B ,B��=−4�z � �z. The condi-
tion �4� is then satisfied in the separable state �
↑ ↑ 	�↑↑ 

+ 
↓ ↓ 	�↓↓ 
� /2 in the z basis.

Nevertheless, we can infer from Eq. �4� that for maximal
violation the local observables must anticommute, i.e.,
�A ,A��= �B ,B��=0 �a result already obtained in a different
way by Popescu and Rohrlich �13��. To see this, consider
local observables, which are not necessarily anticommuting
and note that i�A ,A�� /2=−�a�a�� ·� and analogously
i�B ,B� /2=−�b�b�� ·�. We thus get


��A,A�� � �B�,B�	�
 = 4
��a � a�� · � � �b � b�� · �	�
 .
�5�

This can equal 4 only if �a�a� � = �b�b� � =1, which implies
that a ·a�=0 and b ·b�=0, since a, a�, b, and b� are unit
vectors.

If we denote by �A the angle between observables A and
A� �i.e., cos �A=a ·a�� and analogously for �B, we see that
the local observables must thus be orthogonal: �A=�B=� /2
�mod ��, or equivalently, they must anticommute. Thus the
condition �4� implies that we need locally anticommuting
observables to obtain a maximal violation of the Bell-CHSH
inequality.

As mentioned in the Introduction, local commutativity
�i.e., �A ,A��= �B ,B��=0� corresponds to the observables be-
ing parallel or antiparallel, i.e., �A=�B=0 �mod. ��, and local
anticommutativity �i.e., �A ,A��= �B ,B��=0� corresponds to
the observables being orthogonal, i.e., �A ,�B= ±� /2. There-
fore, in order to obtain any violation at all it is necessary that
the local observables are at some angle to each other, i.e.,
�A�0,�B�0, whereas maximal violation is only possible if
the local observables are orthogonal.

This suggests that there exists a quantitative trade-off re-
lation that expresses exactly how the amount of violation
depends on the local angles �A ,�B between the spin observ-
ables. In other words, we are interested in determining the
form of

C��A,�B� ª max
��D


�B	�
 . �6�

In the next section we will present such a relation.
However, before doing so, we continue our review for the

case of separable quantum states. In this case, a more strin-
gent bound on the expectation value of the Bell operator is
obtained than the usual bound of 2.

B. Local anticommutativity and separable states

Using the quadratic separability inequality of Ref. �5� for
anticommutating observables ��A ,A��= �B ,B��=0� we get
for all states in Dsep

�B	�
2 + �B�	�

2 � 2��1 � 1 − A� � B�	�
2 − �A� � 1 − 1 � B�	�

2� ,

�7�

where B� is the same as B but with the local observables
interchanged �i.e., A↔A�, B↔B��, and where we have also
used the shorthand notation A�= i�A ,A�� /2 and B�
= i�B ,B�� /2. Note that the triple A ,A� ,A� are mutually anti-
commuting and can thus be easily extended to form a set of
local orthogonal observables for C2 �so-called LOO’s �8��.

The separability inequality �7� provides a very strong en-
tanglement criterion �5�, but it is here used to derive a
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�weaker� separability inequality in terms of the Bell operator
B for all states in Dsep:


�B	�
 ��21 −
1

4

��A,A��	�1


2�1 −
1

4

��B,B��	�2


2� .

�8�

Here �1 and �2 are the reduced single qubit states that are
obtained from � by partial tracing over the other qubit. The
inequality �8� is the separability analogue for anticommuting
observables of the Tsirelson inequality �3�. Note that even in
the weakest case ���A ,A��	�1

= ��B ,B�	�2
=0� it implies


�B	� 
 ��2, which strengthens the original Bell-CHSH in-
equality �14�. Thus, for separable states, a reversed effect of
the requirement of local anticommutativity appears than for
entangled quantum states. Indeed, for locally anticommuting
observables we deduce from Eq. �8� that the maximum value
of �B	� is considerably less than the maximum value of 2
attainable using commuting observables. In contrast to en-
tangled states, the requirement of anticommutivity, which, as
we have seen, is equivalent to local orthogonality of the spin
observables, thus decreases the maximum expectation value
of the Bell operator B for separable states.

An interesting question is now, what happens to the maxi-
mum attainable by separable states for locally noncommut-
ing observables that are not precisely anticommuting? Or put
equivalently, how does this bound depend on the angles be-
tween the local spin observables when the observables are
neither parallel nor orthogonal? From the above one would
expect the bound to drop below the standard bound of 2 as
soon as the settings are not parallel or antiparallel. Just as in
the case of general quantum states it would thus be interest-
ing to get a quantitative trade-off relation that expresses ex-
actly how the maximum bound for �B	� depends on the local
angles of the spin observables. In other words, we need to
establish

D��A,�B� ª max
��Dsep


�B	�
 , �9�

from which we obtain the separability inequality


�B	�
 � D��A,�B�, � � Dsep. �10�

In the following we present such a tight trade-off relation.

III. TRADE-OFF RELATIONS

A. General qubit states

It was already pointed out by Landau �11� that inequality
�3� is tight, i.e., for all choices of the observables, there exists
a state � such that

max
��D


�B�	
 = �4 + 
��A,A�� � �B�,B�	�
 . �11�

This maximum is invariant under local unitary transforma-
tions U � U�, since Tr��U � U��†B�U � U����=Tr�B�̃� with
�̃= �U � U����U � U��†. This invariance amounts to a free-
dom in the choice of the local reference frames.

Hence, without loss of generality, we can choose

a = �1,0,0�, a� = �cos �A,sin �A,0� ,

b = �1,0,0�, b� = �cos �B,sin �B,0� . �12�

For this choice �12� one has i�A ,A�� /2=−sin �A�z and,
analogously, i�B ,B� /2=−sin �B�z. Hence, we immediately
obtain

max
��D


�B�	
 = �4 + 4
sin �A sin �B��z � �z	�
 . �13�

To obtain a state independent bound, it remains to be shown
that we can choose � such that 
��z � �z	� 
 =1 in order to
conclude that

C��A,�B� = �4 + 4
sin �A sin �B
 . �14�

To see that Eq. �14� holds, note that the Bell operator for
the above choice Eq. �12� of observables becomes

B = �
↑↑	�↓↓
 + �
↑↓	�↓↑
 + �*
↓↑	�↑↓
 + �*
↓↓	�↑↑
 ,

�15�

with

� = 1 + e−i�A + e−i�B − e−i��A+�B�, �16�

� = 1 + e−i�A + ei�B − e−i��A−�B�. �17�

We distinguish two cases: �i� when sin �A sin �B	0 �i.e.,
when 0��A ,�B�� or ���A ,�B�2��, choose the pure
state 

�

+	= 1
�2

�
↑ ↑ 	+ei� 
 ↓ ↓ 	�. Then,

max
�

Tr�B

�
+	�
�

+
� = max
�

�Re���cos � + Im���sin ��

= 
�
 = �4 + 4 sin �A sin �B. �18�

Similarly, �ii� for sin �A sin �B�0 �i.e., 0��A��, ���B
�2� or ���A�2�, 0��B���, and the pure state 
��

+	
= 1

�2
�
↑ ↓ 	+ei� 
 ↓ ↑ 	� we find

max
�

Tr�B
��
+	���

+
� = max
�

�Re���cos � + Im���sin ��

= 
�
 = �4 − 4 sin �A sin �B. �19�

Since 
��z � �z	


�
+	 
 = 
��z � �z	
�

�
+	 
 =1 we see that the bound

in Eq. �14� is saturated. The shape of the function C��A ,�B�
as determined in Eq. �14� is plotted in Fig. 1.

We thus see that C��A ,�B� becomes greater and greater
when the angles approach orthogonality. Obviously, for the

0

Π
ΘA 0

Π

ΘB

2

2
�����

2

��B��

0

Θ

FIG. 1. �Color online� Plot of C��A ,�B�=max��D 
 �B	�
 as given
in Eq. �14� for 0��A ,�B��.
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extreme cases of parallel and completely orthogonal settings
�i.e., �A=�B=0 or � /2� we retrieve the results mentioned in
Sec. II A.

If both angles are chosen the same, i.e., �A=�Bª�, Eq.
�14� simplifies to

C��,�� = �4 + 4 sin2� , �20�

which is plotted in Fig. 3.

B. Separable qubit states

The set Dsep of separable states is closed under local uni-
tary transformations. Therefore, to find max��Dsep


 �B	�
, we
may consider the same choice of observables as before in Eq.
�12� without loss of generality. Further, we only have to con-
sider pure states and can take the state 
	= 
�1	 
�2	 with


�1	 = cos �1e−i
1/2
↑	 + sin �1ei
1/2
↓	

and


�2	 = cos �2e−i
2/2
↑	 + sin �2ei
2/2
↓	 .

We then obtain

�A	�1
= sin 2�1 cos 
1,

�A�	�1
= sin 2�1 cos�
1 − �A� ,

�B	�2
= sin 2�2 cos 
2

and

�B�	�2
= sin 2�2 cos�
2 − �B�

Since 
	 is separable, we get �A � B	= �A	�1
�B	�2

, etc.,
and the maximal expectation of the Bell operator becomes

D��A,�B� = max


�B	

= max
�1,�2,
1,
2

sin 2�1 sin 2�2

��cos 
1�cos 
2 + cos�
2 − �B��

+ cos�
1 − �A��cos 
2 − cos�
2 − �B��� .

�21�

This maximum is attained for �1=�2=� /4 and Eq. �21� re-
duces to

D��A,�B� = max

1,
2

cos 
1�cos 
2 + cos�
2 − �B��

+ cos�
1 − �A��cos 
2 − cos�
2 − �B�� .

�22�

A tedious but straightforward calculation yields that the
maximum over 
1 and 
2 is given by

D��A,�B� = 
W+�1 + X±
2�−1/2 + cos�arctan�X±� − �A�W−
 ,

�23�

with

W± ª 1 +
Z2

sin2�BY2�−1/2

± cos�arctan Z

sin �BY
� + �B� ,

�24�

X± ª �sin �A cos2�A sin2�B�−1�− cos �A�cos �B + cos2�B

+ cos2�A sin2�B� ± �cos2�A�1 + cos2�B��cos2�B

+ cos2�A sin2�B��1/2� , �25�

Y ª X±�1 − cos �A + sin �A� , �26�

Z ª X±�1 + cos �B + cos �A − cos �B cos �A� + cos �B sin �A

− sin �A, �27�

where in X± the + sign is chosen for −� /2��A�� /2 and
the − sign is chosen for � /2��A�3� /2 �both modulo 2��.
The function �23� is plotted in Fig. 2.

From this figure we conclude that the maximum of 
�B	�

for separable states becomes smaller and smaller when the
angles approach orthogonality. For parallel and completely
orthogonal settings we again retrieve the results of Sec. II B.
As a special case, suppose we choose �A=�Bª�. Then, Eq.
�23� reduces to the much simpler expression

D��,�� = 
cos �
 + �1 + sin2� . �28�

This result strengthens the bound obtained previously by
Roy �4� for this special case, which is

D��,�� � ��2�
cos �
 + 1�, 
cos �
 � 3 − 2�2,

1 + 2�
cos �
 − 
cos �
, otherwise.
�29�

Both functions are shown in Fig. 3.

IV. DISCUSSION

In this manuscript we have given tight quantitative ex-
pressions for two trade-off relations. First, between the de-
grees of local commutativity, as measured by the local angles
�A and �B, and the maximal degree of Bell-CHSH inequality
violation, in the sense that if both local angles increase to-
wards � /2 �i.e., the degree of local commutativity de-
creases�, the maximum violation of the Bell-CHSH inequal-
ity increases. Secondly, a converse trade-off relation holds
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ΘΘΘΘAAAA 0000

ΠΠΠΠ

ΘΘΘΘBBBB

��������������������
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��������BBBB��������
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ΘΘΘΘ

FIG. 2. �Color online� Plot of D��A ,�B�ªmax��Dsep

 �B	�
 as

given in Eq. �23� for 0��A ,�B��.
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for separable states: if both local angles increase towards
� /2, the value attainable for the expectation of the Bell op-
erator decreases and thus the non-violation of the Bell-
CHSH inequality increases. The extreme cases of these rela-
tions are obtained for anticommuting local observables
where the bounds of 2�2 and �2 hold. For the case of equal
angles the trade-off relation for separable states strengthens a
previous result of Roy �4�.

Our results are complementary to the well studied ques-
tion what the maximum of the expectation value of the Bell
operator is when evaluated in a certain state �see, e.g., Ref.
�2��. Here we have not focussed on a certain given state, but
instead on the observables chosen, i.e., we asked, indepen-
dent of the specific state of the system, what the maximum of
the expectation value of the Bell operator is when using cer-
tain local observables. The answer found shows a diverging
trade-off relation for the two classes of separable and non-
separable states.

Indeed, these two trade-off relations show that local non-
commutativity has two diametrically opposed features: On
the one hand, the choice of locally noncommuting observ-
ables is necessary to allow for any violation of the Bell-
CHSH inequality in entangled states �a “more than classical”
result�. On the other hand, this very same choice of noncom-
muting observables implies a “less than classical” result for
separable states: For such states the correlations �in terms of
�B	�� obey a more stringent bound than allowed for in local
hidden variable theories, i.e., the Bell-CHSH inequality �2�.

These trade-off relations are useful for experiments aim-
ing to detect entangled states. They have an experimental
advantage above both Bell inequalities and entanglement
witnesses as tests for two qubit entanglement. This will be
discussed next.

For comparison to the Bell-CHSH inequality as a test of
entanglement, let us define the “violation factor” X as the
ratio C��A ,�B� /D��A ,�B�, i.e., the maximum correlation at-
tained by entangled states divided by the maximum correla-

tion attainable for separable states. In Fig. 4 we have plotted
this violation factor X for the special case of equal angles,
see Eqs. �20� and �28�, and compared it to the ratio by which
these maximal correlations violate the Bell-CHSH inequality
�2�, i.e., XCHSHªC�� ,�� /2. Figure 4 shows that the violation
factor X is always higher than XCHSH except when �=0. For
angles ��� /4 these two factors differ only slightly, but the
violation factor X increases to �2 times the original factor
XCHSH when � approaches � /2. Furthermore note that the
factor X increases more and more steeply, whereas XCHSH
increases less and less steeply. For the case of unequal angles
the same features occur, as is evident from comparing Figs. 1
and 2.

Therefore, the comparison of the correlation in entangled
states to the maximum correlation obtainable in separable
states yields a stronger test for entanglement than violations
of the Bell-CHSH inequality. Indeed, the violation factor
may reach 2 instead of �2. This means that the separability
inequality �10� allows for the detection of more entangled
states as well as for greater noise robustness in detecting
entanglement �see Ref. �5��. Clearly, the optimal case of this
relation obtains when the local observables are exactly or-
thogonal to each other. On the other hand, in the case where
at least one of the local pairs of observables are parallel, no
improvement upon the Bell-CHSH inequality is obtained.
But that case is trivial, i.e., no entangled state can violate
either Eq. �2� or �10� in that case.

Other criteria for the detection of entanglement than the
Bell-CHSH inequality have been developed in the form of
entanglement witnesses. In general, these criteria have two
experimental drawbacks �15,16�: �i� they are usually de-
signed for the detection of a particular entangled state and
hence require some a priori knowledge about the state and
�ii� they require the implementation of a specific set of local
observables �e.g., locally orthogonal ones �8��. The separa-
bility inequality �10� compares favorably on these two
points, as we will discuss next.

In real experimental situations one might not be com-
pletely sure about which observables are being measured.
For example, one might not be sure that the local angles are
exactly orthogonal in the optimal setup. However, even in
such cases, one might be reasonably sure that the angles are
close to 90°, e.g., that these angles certainly lie within some

0
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2

2
√

2

√
2

C(θ, θ)

D(θ, θ)

θ

FIG. 3. Plot of the results �20� �dashed line� and �28� �uninter-
upted line�, and of the bound by Roy �4� given in Eq. �29� �dotted
line�.

0
π/2

2

√
2

1

X

XCHSH

θ

FIG. 4. Violation factor X �uninterupted line� and XCHSH �dashed
line� for �A=�Bª�.
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finite-sized interval � around 90°. In that case, the bound �10�
for separable states would, of course, be higher than the op-
timal value of �2 and the increase depends on the size of the
interval specified. But the trade-off relation presented in this
manuscript tells us exactly how much higher the bound be-
comes as a function of the angles �e.g., �=� /2±��, so one
can still obtain a relevant bound on 
�B	
. One can thus still
use it as a criterion for testing entanglement in the presence
of some ignorance about the measured observables. En-
tanglement witnesses do not share this feature since no other
trade-off relations have been obtained �at least to our knowl-
edge� that quantify how the performance of the witness is
changed when one allows for uncertainty in the observables
that feature in the witness.

Note that for two qubits this result answers the question
raised in Ref. �17� where it was asked how separability in-
equalities for orthogonal observables could allow for some
uncertainty � in the orthogonality, i.e., allowing for

�A ,A�� 
 �� �analogous for B, B��.

A further advantage of the separability inequalities �10� is
that they are not state dependent and are formulated in terms
of locally measurable observables from the start, whereas it

is usually the case �apart from a few simple cases� that con-
structions of entanglement witnesses involve some extrem-
ization procedure and are state dependent. Furthermore, find-
ing the decomposition of witnesses in terms of a few locally
measurable observables is not always easy �7�. However, it
must be said that choosing the optimal set of observables in
the separability inequalities for detecting a specific state of
course also requires some prior knowledge of this state.

The results presented here only concern the bipartite lin-
ear Bell-type inequality. It might prove useful to look for
similar trade-off relations for nonlinear separability inequali-
ties as well as for entanglement witnesses. Furthermore, it
would be interesting to extend this analysis to the multipar-
tite Bell-type inequalities involving two dichotomous ob-
servables per party such as the Werner-Wolff-Żukowski-
Brukner inequalities �18� or the Mermin-type inequalities
�19�. For the latter the situation for local anticommutivity has
already been investigated �4,17,20�, but for noncommuting
observables that are not anticommuting no results have yet
been obtained.
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