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Abstract. We present a method to derive separability criteria for different
classes of multiparticle entanglement, especially genuine multiparticle
entanglement. The resulting criteria are necessary and sufficient for certain
families of states. This, for example, completely solves the problem of
classifying N -qubit Greenberger–Horne–Zeilinger states mixed with white noise
according to their separability and entanglement properties. Further, the criteria
are superior to all known entanglement criteria for many other families; also they
allow the detection of bound entanglement. We next demonstrate that they are
easily implementable in experiments and discuss applications to the decoherence
of multiparticle entangled states.
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1. Introduction

Entanglement is relevant for many effects in quantum optics or condensed matter physics and its
characterization is of eminent importance for studies in quantum information processing [1, 2].
Concerning entanglement between two particles, many questions are still open, but there exist
at least various criteria that can be used to test whether a given quantum state is entangled or
separable. For more than two particles, however, the situation is significantly more complicated,
as several inequivalent classes of multiparticle entanglement exist and it is difficult to decide to
which class a given state belongs. Entanglement witnesses and Bell inequalities can sometimes
distinguish between the different classes [2, 3]. However, it would be desirable to have useful
criteria that allow us to detect the different classes of multipartite entanglement directly from a
given density matrix; a general method to derive such criteria is missing [4].

In this paper, we present such a systematic way to develop multiparticle entanglement
criteria. The resulting criteria solve the separability problem for certain families of states
(notably the well-studied N -qubit Greenberger–Horne–Zeilinger (GHZ) states mixed with
white noise) and improve known results in many other cases. Also, they allow us to detect
bound entangled states that are separable under each partition, but not fully separable. Moreover,
our criteria can easily be used in today’s experiments and they improve the understanding of
decoherence in multiparticle quantum systems.

Let us recall the main definitions for multipartite entanglement. For three particles, a pure
state is fully separable if it is of the form |ψ fs

〉 = |a〉|b〉|c〉 and a mixed state is fully separable
if it can be written as a convex combination of fully separable pure states

%fs
=

∑
k

pk|ψ
fs
k 〉〈ψ fs

k |, (1)

where the pk forms a probability distribution. A pure state is called biseparable if it is separable
under some bipartition. An example is |ψbs

〉 = |a〉|φbc
〉, where |φbc

〉 is a possibly entangled
state on particles B and C . This state is biseparable under the A|BC-partition; other bipartitions
are the B|AC- or C |AB-partition. A mixed state is biseparable if it can be written as %bs

=∑
k pk|ψ

bs
k 〉〈ψbs

k |, where |ψbs
k 〉 might be biseparable under different partitions. Finally, a state is

genuinely multipartite entangled if it is not biseparable. This class of entanglement one usually
aims to generate and verify in experiments5 and we mainly consider entanglement criteria for
5 For a justification, see section 3.2.2 in [2].
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this type of entanglement. Note that generalizations and further classifications can be found,
e.g., in [2], [5]–[7].

2. Three qubits

We explain our main ideas using three qubits; the generalization to more particles (or higher
dimensions) is straightforward and will be discussed later. For a three-qubit density matrix %
we denote its entries by %i, j , where 16 i, j 6 8; here and in the following, we always use the
standard product basis {|000〉, |001〉, . . . , |111〉}. Then we have:

Observation 1. Let % be a biseparable three-qubit state. Then its matrix entries fulfill

|%1,8|6
√
%2,2%7,7 +

√
%3,3%6,6 +

√
%4,4%5,5 (2)

and violation implies genuine three-qubit entanglement.

Proof. First, note that for two positive linear functions f (x) and g(x) the function h =
√

f g
is concave, that is, h[r x1 + (1 − r)x2]> rh(x1)+ (1 − r)h(x2) for any mixing ratio r .6

Consequently, the function
√
%2,2%7,7 +

√
%3,3%6,6 +

√
%4,4%5,5 − |%1,8| is concave in the state,

because it is a sum of concave functions of the matrix entries (the absolute value is convex).
So it suffices to prove its positivity for pure biseparable states; then mixtures of these will
inherit the bound. Let |ψ〉 = (a0|0〉 + a1|1〉)⊗ (b00|00〉 + b01|01〉 + b10|10〉 + b11|11〉) be a pure
state, which is biseparable under the A|BC partition. For that, one can directly see that |%1,8| =
√
%4,4%5,5. For the other two bipartitions one finds |%1,8| =

√
%3,3%6,6 and |%1,8| =

√
%2,2%7,7;

hence, equation (2) is valid for any pure biseparable state, which proves the claim. ut

This criterion has also been derived in the context of quadratic Bell inequalities [5];
however, our proof is considerably shorter and, most importantly, it can be generalized to
derive other characterizations of the different entanglement classes. Note that equation (2) is
independent of the normalization of the state, simplifying many calculations below. Equation (2)
is maximally violated by the GHZ state, |GHZ3〉 = (|000〉 + |111〉)/

√
2. For other states, one

may first change the local basis (leading, e.g., to the criterion |%2,7|6
√
%1,1%8,8 +

√
%3,3%6,6 +

√
%4,4%5,5), but these will not be considered as independent criteria.

To discuss the strength of observation 1, we consider states that are diagonal in the
GHZ basis. This basis consists of the eight states |ψi〉 = (|x1x2x3〉 ± |x̄1 x̄2 x̄3〉)/

√
2, where

x j , x̄ j ∈ {0, 1} and x j 6= x̄ j . States that are diagonal in this basis are of the form

%(dia)
=

1

N



λ1 0 0 0 0 0 0 µ1

0 λ2 0 0 0 0 µ2 0
0 0 λ3 0 0 µ3 0 0
0 0 0 λ4 µ4 0 0 0
0 0 0 µ4 λ5 0 0 0
0 0 µ3 0 0 λ6 0 0
0 µ2 0 0 0 0 λ7 0
µ1 0 0 0 0 0 0 λ8


, (3)

6 More generally, one has that if f1, . . . , fn are positive concave functions, then g =
( ∏n

k=1 fk
)1/n

is also concave.
This can be seen as follows: first, as the function h(x)= (x)1/n is monotonically increasing, it suffices to prove the
claim for linear fk . Then, one can directly calculate that the second derivative of g is not positive. See also page 87
in [8].
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Figure 1. The entanglement properties of N -qubit GHZ states mixed with white
noise, %(ghzN)

= (1 − p)|GHZ N 〉〈GHZ N | + p1/2N . It was known before [6] that
these are fully separable iff 1/[1 + 2(1−N )]6 p 6 1, while for smaller p they are
inseparable under any partition. Our results show that iff 06 p<1/[2(1 − 2−N )]
the states are genuinely multipartite entangled. Consequently, in the region in
between the two bounds, the states %(ghzN) are biseparable yet inseparable under
any fixed bipartition.

with real λi and µi , fulfilling λi = λ9−i for i = 1, . . . , 4, andN denotes a normalization. We can
state:

Observation 2. For GHZ-diagonal states, the criterion from observation 1 constitutes a
necessary and sufficient criterion for genuine multipartite entanglement.

Proof. The proof is given in the appendix. ut

This shows that the criterion of observation 1 is a strong criterion in the vicinity of GHZ
states; indeed its later generalization solves the problem of classifying N -qubit GHZ states
mixed with white noise (see figure 1).

It remains to investigate what happens for other states, such as the W state, |W3〉 = (|001〉 +
|010〉 + |100〉)/

√
3. First, one can apply local unitary operations before testing equation (2). This

indeed works for the pure W state, but one can also derive stronger criteria:

Observation 3. Any biseparable three-qubit state fulfills

|%2,3| + |%2,5| + |%3,5|6
√
%1,1%4,4 +

√
%1,1%6,6 +

√
%1,1%7,7 + 1

2(%2,2 + %3,3 + %5,5). (4)

Proof. Again, it suffices to consider pure states. Then, for a state that is A|BC-biseparable, one
sees that |%2,5| =

√
%1,1%6,6 and |%3,5| =

√
%1,1%7,7. Furthermore, one has |%2,3|6 (%2,2 + %3,3)/2,

which follows already from the positivity of the density matrix. Therefore, equation (4) holds
for the A|BC partition, and similarly one can prove it holds for the other two bipartitions. ut

This observation deserves two comments. Firstly, this criterion is quite strong. It detects W
states mixed with white noise, i.e. %(w3)(p)= (1 − p)|W3〉〈W3| + p1/8, for p < 8/17 ≈ 0.471
as genuine tripartite entangled, whereas the best known entanglement witness detects it only
for p < 8/19 ≈ 0.421.7 Secondly, it should be noted that observation 3 is independent of

7 For three qubits, this witness isW = (2/3) · (1− |111〉〈111|)− |W3〉〈W3|; see also section 6.8.2 in [2].
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observation 1: the states %(w3)(p) for p ∈ (0.413; 0.471) are directly detected by observation 3.
They are, however, not detected by equation (2), even if local filter operations % 7→ %̃ = F1 ⊗

F2 ⊗F3%F†
1 ⊗F†

2 ⊗F†
3 are applied with arbitrary matrices Fi , as can be checked numerically.

So far, we have only considered criteria for biseparable states. Our approach also allows us
to derive criteria for other entanglement classes:

Observation 4. (i) For fully separable three-qubit states, the following inequalities hold:

|%1,8|6 (%2,2 · %3,3 · %4,4 · %5,5 · %6,6 · %7,7)
1
6 (5)

|%1,8|6 (%1,1 · %2
4,4 · %5,5 · %6,6 · %7,7)

1
6 (6)

(ii) Equations (5) and (6) are connected via the substitution %2,2%3,3 → %1,1%4,4. Similarly, one
obtains new separability criteria from equation (5) by making the substitutions %6,6%7,7 →

%5,5%8,8, %2,2%5,5 → %1,1%6,6, %4,4%7,7 → %3,3%8,8, %3,3%5,5 → %1,1%7,7 and %4,4%6,6 → %2,2%8,8.

Combining such substitutions, one also obtains new separability criteria, e.g. |%1,8|6
(%2,2 · %3,3 · %5,5 · %8,8)

1/4.

(iii) A condition for full separability that is violated in the vicinity of a W state is

|%2,3| + |%2,5| + |%3,5|6
√
%1,1%4,4 +

√
%1,1%6,6 +

√
%1,1%7,7. (7)

(iv) Equation (5) is a necessary and sufficient criterion for full separability for GHZ states
mixed with white noise.

Proof. The proof is essentially the same as before, using the concavity of more generalized
functions [8]. The inequalities (5) and (7) are equalities for pure fully separable states. The
substitutions as in equation (6) can be made, since %2,2%3,3 = %1,1%4,4, etc hold for any pure fully
separable state. Concerning (iv), note that equation (5) detects noisy GHZ states for p < 4/5,
and this value is known to mark the border of the fully separable states [6]. ut

Surprisingly, substitutions as in equation (6) do indeed improve the criterion in some cases.
For example, consider the family of bound entangled states of [7]. These are states as in equa-
tion (3) with λ1 = λ8 = µ1 = 1 and λ2 = 1/λ7, λ3 = 1/λ6, λ4 = 1/λ5 and µ2 = µ3 = µ4 = 0.
For λ2 · λ3 6= λ4 these states are separable under each bipartition, but not fully separable. Their
entanglement is detected by equation (6) or other substitutions. Moreover, as one can directly
check, for the special case λ2 = λ3 = λ5 the inequality in (ii) tolerates significantly more noise
than the best known witness [9] and gives more significant results for recent experiments8.

3. Many qubits

Let us start with introducing a compact notation. Firstly, we label the diagonal elements of % by
the corresponding product vector in the standard basis. That is, if I = (i1, i2, . . . , iN ) is a tuple
consisting of N indices ik ∈ {0, 1} then %I = %(i1,i2,...,i N ) is the diagonal entry corresponding to
|i1, i2, . . . , iN 〉〈i1, i2, . . . , iN |. For example, for three qubits %(000) = %1,1 and %(001) = %2,2, etc.
For a given I , one can define Ī as the tuple arising from I if zeroes and ones are exchanged,
e.g. (001)= (110). Furthermore, let |I | denote the number of ik = 1 in I, then

∑
|I |=n denotes

a sum over all I with |I | = n.

8 In [10], this state has been experimentally prepared, and its entanglement has been confirmed with 2.9 standard
deviations. Our new criterion detects it with a significance of 4.5 standard deviations.
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Secondly, let σ = |ψ〉〈ψ | be a target state and % be a different state. We abbreviate with
O|ψ〉(%) the sum of the absolute values of the off-diagonal elements of % in the upper triangle,
which correspond to matrix entries where σ does not vanish. For instance, for the three-qubit
GHZ state, we have O|GHZ3〉(%)= |%1,8| and equation (4) can now be conveniently rewritten as
O|W3〉(%)6

∑
|I |=2

√
%(000)%I + 1

2

∑
|I |=1 %I .

The idea behind this notation is to estimate all off-diagonal elements similarly as in
observation 1. Explicitly, we have for four qubits:

Observation 5. (i) From the four-qubit GHZ state, |GHZ4〉 = (|0000〉 + |1111〉)/
√

2, a
necessary condition for biseparability of a general state % is

O|GHZ4〉(%)6
1

2

∑
|I |={1,2,3}

√
%I%I . (8)

This condition is necessary and sufficient for biseparability of GHZ-diagonal states in the sense
of observation 2.
(ii) From the four-qubit W state, |W4〉 = (|0001〉 + |0010〉 + |0100〉 + |1000〉)/2, a criterion is
derived as

O|W4〉(%)6
∑
|I |=2

√
%(0000)%I +

∑
|I |=1

%I . (9)

(iii) From the four-qubit Dicke state, |D4〉 = (|0011〉 + |0101〉 + |1001〉 + |0110〉 + |1010〉 +
|1100〉)/

√
6, a criterion is derived as

O|D4〉(%)6
√
%(0000)%(1111) +

∑
|I |=1

∑
|J |=3

√
%I%J +

3

2

∑
|I |=2

%I . (10)

Proof. (i) is proved as in observations 1 and 2. The factor 1/2 takes into account that
each possible term occurs twice in the sum. (ii) and (iii) follow as in observation 3. Here,
estimating an off-diagonal element can be simplified by the following rule: if the off-
diagonal element η corresponds to |i1i2i3i4〉〈 j1 j2 j3 j4| and the state is separable under the
A|BCD-bipartition, one has η 6

√
%(i1 j2 j3 j4)%( j1i2i3i4), while one has η 6

√
%(i1i2 j3 j4)%( j1 j2i3i4) for

the AB|CD-bipartition, etc. Further, one needs that for a positive n × n matrix P , the bound∑
i< j |Pi j |6 ((n − 1)/2)Tr(P) holds9. ut

Again, these criteria improve known conditions: for the four-qubit W state mixed with
white noise, equation (9) detects genuine multipartite entanglement for p < 4/9 ≈ 0.444, while
the fidelity-based witness detects it only for p < 4/15 ≈ 0.267 and the improved witness
(see footnote 7) for p < 16/45 ≈ 0.356. A four-qubit Dicke state mixed with white noise is
detected by equation (10) for p < 8/21 ≈ 0.381, whereas the best known witness detects it for
p > 16/45 ≈ 0.356.10

For arbitrary states, similar entanglement criteria can be derived as follows. In a given
basis and for a fixed partition, any off-diagonal element can be estimated as in the proof of
observation 5. Then, all these estimates can be summarized to an estimate of the sum of all

9 This generalizes the estimate |%23|6 (%22 + %33)/2 from observation 3 and can be seen as follows: one has for any
|x〉 that 〈x |P|x〉> 0, and taking |x〉 of the type |x〉 = (1, eiφ, 0, . . . , 0) and summing over all possible permutations
thereof gives the bound.
10 The best known witness isW = (2/3) ·1− |D4〉〈D4|, see [11].
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off-diagonal elements. This might be further improved by considering a weighted sum. For
instance, for N -qubit GHZ states, the criterion readsO|GHZ N 〉(%)6 1

2

∑N−1
|I |=1

√
%I% Ī and is again

necessary and sufficient for GHZ diagonal states as the proof of observation 2 can directly be
generalized (see figure 1). Further criteria for cluster states or the four-qubit singlet state will be
presented elsewhere.

4. Experimental consequences

Obviously, these criteria can be applied to experiments where the full density matrix has been
determined [12]. However, often this cannot be done. Still, our results may be directly applied.
For example, let us consider equation (4) for the detection of entanglement around the three-
qubit W state. Using the fidelity F = Tr(%|W3〉〈W3|) one may rewrite equation (4) as

F 6 2
3(

√
%1,1%4,4 +

√
%1,1%6,6 +

√
%1,1%7,7 + %2,2 + %3,3 + %5,5).

The fidelity of the W state can be measured experimentally with five local measurements [13]
and the diagonal elements can also be determined from measurement of σz ⊗ σz ⊗ σz, which is
already included in the measurements needed for the fidelity. This shows that equation (4) (and
similarly all other criteria presented) is experimentally easily testable. For the usual error models
in photon experiments, one can also check that criterion (4) detects entanglement with a higher
statistical significance than the witness, unless the fidelity is close to one and the significance of
both methods is high.

5. Decoherence

Finally, our results also shed light on the decoherence of multipartite entanglement. Consider an
N -qubit GHZ state, influenced by relaxation—the noise that is dominant in ion traps [14]. On a
single qubit, this changes the density matrix according to |0〉〈0| → |0〉〈0|, |1〉〈1| → x |1〉〈1| +
(1 − x)|0〉〈0| and (|0〉〈1| + h.c.)→ x1/2(|0〉〈1| + h.c.) (with x = e−γ t ) and corresponds to a
coupling to a bath with zero temperature. The total density matrix can directly be computed [15],
resulting in %1,2N = x N/2 for the off-diagonal element and %I = [δ|I |,0 + x |I |(1 − x)N−|I |]/2 for
the diagonal elements. Here, we have used the same notation as in observation 5.

This state is not diagonal in the GHZ basis, but applying on each qubit a filter % 7→ F%F
with F = α|0〉〈0| + (1/α)|1〉〈1| and α4

= x/(1 − x) maps it to a state that differs from a
GHZ diagonal state only in the element %1,1. This filtering keeps all entanglement properties,
but finally observations 1 and 2 can be used. From this one can conclude that GHZ states
coupled to a bath with zero temperature are genuine multipartite entangled, if and only if
t <−ln[1 − (2N−1

− 1)−2/N ]/γ .

6. Conclusion

We present a method to derive separability criteria for different classes of multipartite
entanglement directly in terms of density matrix elements. The resulting criteria are strong
and can be used in experiments, as well as for the investigation of decoherence. It would be
interesting to use our approach to discriminate between more special entanglement classes
(such as the W and GHZ class for three qubits [7]) and to connect it to the quantification of
entanglement with entanglement measures.
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Appendix

Here, we prove observation 2. Since %(dia) > 0, we have |µi |6 λi and we can assume that
λ1 > λ2 > λ3 > λ4 as one can achieve that by a local change of the basis. Then, equation (2)
reads |µ1|6 λ2 + λ3 + λ4, and we will show that if this holds, a decomposition into biseparable
states can be found. Note that due to the ordering of the λi other conditions for biseparability
(e.g. |µ2|6 λ1 + λ3 + λ4) can then never be violated.

Let us define the unnormalized state %(12)(λ) with λ1 = µ1 = λ2 = µ2 = λ, while all other
matrix entries vanish. This state is AB|C-biseparable, since it can be written as

%(12)(λ)= 2λ(|χ+
〉〈χ+

|AB ⊗ |η+
〉〈η+

|C + |χ−
〉〈χ−

|AB ⊗ |η−
〉〈η−

|C) (A.1)

with |χ±
〉 = (|00〉 ± |11〉)/

√
2 and |η±

〉 = (|0〉 ± |1〉)/
√

2.Analogously, one can consider states
%(kl) for any k, l = 1, . . . , 4 with k 6= l and find that they are also biseparable, as one only has to
permute or flip some qubits.

(i) Firstly, we consider the extremal case when µi = λi for all i and by assumption the
separability condition implies that we have µi = λi 6

∑
k 6=i λk, where for the index 16 k 6 4.

If λ1 = λ2 + λ3 + λ4 we can directly write %(dia)
=

∑
k=2,3,4 %

(1k)(λk); hence %(dia) is biseparable.
Otherwise, the idea is to write

%(dia)
=

∑
k=2,3,4

%(1k)(χk)+ %(r) (A.2)

for some parameters χk such that the rest %(r) (which is then characterized by parameters λ(r)k )
fulfills two conditions. Its first and last column and row should vanish (%(r)1,1 = λ

(r)
1 = 0) and it

should still fulfill all biseparability conditions (e.g. λ(r)2 6 λ
(r)
3 + λ(r)4 ). Then, %(r) can be iteratively

further decomposed and finally a decomposition of %(dia) into biseparable states can be found.
The idea is to choose the λ

(r)
k , k = 2, 3 and 4, as equal as possible (they have to

fulfill λ(r)k 6 λk), but monotonically decreasing. For that, we define α4 := λ2 + λ3 + λ4 −

λ1 = λ
(r)
2 + λ(r)3 + λ(r)4 > 0 and then recursively λ

(r)
4 = min{λ4, α4/3}, then α3 = α4 − λ

(r)
4 and

then λ
(r)
3 = min{λ3, α3/2} and finally α2 = α3 − λ

(r)
3 and λ

(r)
2 = min{λ2, α2}. Then %(dia)

=∑
k=2,3,4 %

(1k)(λk − λ
(r)
k )+ %(r) with λ(r)2 > λ

(r)
3 > λ

(r)
4 . Then we cannot have that both λ(r)4 = λ4

and λ(r)3 = λ3, because if these were true, then from the definition of α4 it would follow that
λ
(r)
2 = λ2 − λ1 6 0. So we have λ(r)3 = α3/2 (λ(r)4 = α4/3 also implies λ(r)3 = α3/2), which due

to the ordering of the λi implies λ(r)2 = α2 = λ
(r)
3 . So λ(r)2 6 λ

(r)
3 + λ(r)4 and one can decompose

%(r) further into %(23) and %(24) and a remaining term with λ(rr)1 = λ
(rr)
2 = 0, etc. Of course, for

the case of three qubits one may also write down suitable values for the λ(r)i directly, but the
previous scheme can straightforwardly be extended to more qubits.

(ii) Secondly, for 06 µi 6 λi , and where again λ1 6 λ2 + λ3 + λ4, we first consider the
states %(kl). Their nonzero matrix elements obey µi = λi , but, applying with some probability
locally conjugate random phases (e.g. |1〉2 7→ eiφ

|1〉2 and |1〉3 7→ e−iφ
|1〉3) to these states
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decreases the values of the µi (in this example for i = 2, 3). Therefore, one can for a given %(kl)

decrease the values of µi arbitrarily by local operations (in the example we can decrease e.g. the
value of µ2 for %(12) or µ3 for %(34)), and the resulting states must be biseparable. Consequently,
a given %(dia) with λ1 6 λ2 + λ3 + λ4 can be decomposed into biseparable states as in (i).

(iii) Further, it may happen that for a given %(dia) one has 06 µ1 6 λ2 + λ3 + λ4 but λ1 >

λ2 + λ3 + λ4. Then we consider %̂, which is obtained from %(dia) by setting λ1 = max{µ1, λ2}.

Then, %̂ is biseparable according to (ii), and %(dia) is obtained from %̂ by mixing with the fully
separable state |000〉〈000| + |111〉〈111|; hence it is biseparable.

(iv) The previous arguments prove the claim if all µi > 0. If some µi are negative, one can
prove it as follows: let % be a GHZ diagonal state, with some µi < 0, which fulfills the condition
of biseparability. The state %̂ that arises from % when all µi are replaced by |µi | fulfills the same
condition, and is biseparable due to points (i)–(iii). It can be decomposed into several %(kl); in
some of them maybe we haveµi(%

(kl)) < λi(%
(kl)) according to points (ii) and (iii). Nevertheless,

we can build out of this decomposition of %̂ a decomposition of % if we flip the signs of all the
µi(%

(kl)) appropriately. An arbitrary flipping of the signs of the µi of a given %(kl) can be done
for each k, l by local operations; hence % is also biseparable.
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