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Background & Introduction

• I have an interest in, firstly, the study of the correlations
between outcomes of measurements on subsystems of a
composite system as predicted by a particular physical theory;

secondly, the study of what this physical theory predicts for the
relationships these subsystems can have to the composite
system they are a part of;

and, thirdly, the comparison of different physical theories with
respect to these two aspects.

• The physical theories investigated and compared are
generalized probability theories in a quasi-classical physics
framework and non-relativistic quantum theory.



Background & Introduction

Motivation: a comparison of the relationships and predicted
correlations between parts and whole as described by each
theory yields a fruitful method to investigate what these physical
theories say about the world.

Prospects: one then finds, independent of any physical model,
relationships and constraints that capture (some of) the essential
physical assumptions and structural aspects of the theory in
question, i.e., a larger and deeper understanding of the different
physical theories and of what they say about the world.

Today, I will not present a philosophical thesis, but only some of
such structural aspects in quantum theory that could be used (by
you) for new philosophical analysis.
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Section I: Preliminaries

W.r.t. the general mereological structure of physical theories I will
focus on:

1) the representation of composite systems and their subsystems
on the state space of the physical theories under study.

2) the algebra of observables acting on the state space that
provides us (loosely speaking) with the (dynamical) properties of
the systems and the logic of true and false propositions about the
systems in question.



Preliminaries: quantum physics

1. State space is a complex Hilbert space H.

2. State space of a composite system is a tensor product of the
individual state spaces: Ha ⊗Hb.

(compare classically: state space Ω is a phase space or
configuration space; composite state space is a Cartesian
product of the individual state spaces: Ωa × Ωb)

3. Pure states: rays |ψ〉 in H.
Mixed states: density operators on H.

(compare classically: pure physical states: points x on a phase
space; mixed physical states: unique convex decomposition of
pure states.)



Preliminaries: paradigmatic example

Consider a composite bipartite quantum system ab consisting of
two subsystems a and b that has state space Hab = Ha ⊗Hb

(e.g., C
2 ⊗ C

2).

Two types of bi-partite mixed states ρab:

(a) Separable states: ρab =
∑

i piρ
i
a ⊗ ρi

b

(special case: product states ρab = ρa ⊗ ρb)

(b) Entangled states: ρab 6= ∑
i piρ

i
a ⊗ ρi

b

In a sense, the separable states correspond to the classical
states, and the entangled states to the non-classical ones (the
latter violate Bell inequalities, allow for nonclassical information
theoretic tasks, etc.)



Separability structure of QM state space for N = 3
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Section II: Shareability and monogamy of classical and
quantum states

What are the structural limitations in the way parts and wholes
can be configurated according to physical theories?

◮ To be presented: a study of this question by focusing on the
limitations set by physical theories on the shareability of
subsystem states and of the correlations present in a composite
system.

Or, can we build up particular composite systems (in particular
configurations) by sharing/duplicating a subsystem, while
maintaining the original configuration (of physical states and/or
correlations) between the initial subsystems? If this is not
possible this is referred to as ’monogamy’.

Note: ‘sharing’ is not to be understood dynamical, but
kinematical.



Monogamy of quantum states

Entanglement is monogamous

If a pure quantum state of two systems is entangled, then none
of the two systems can be entangled with a third system.

1. Suppose that systems a and b are in a pure entangled state.

2. Then when the system ab is considered as part of a larger
system, the reduced density operator for ab must by
assumption be a pure state.

3. However, for the composite system ab (or for any of its
subsystems a or b) to be entangled with another system, the
reduced density operator of ab must be a mixed state.

4. But since it is by assumption pure, no entanglement
between ab and any other system can exist.



Monogamy because of no-cloning

This monogamy can also be understood as a consequence of
the linearity of quantum mechanics that is also responsible for
the no-cloning theorem.

1. For suppose that party a has a qubit which is maximally pure
state entangled to both a qubit held by party b and a qubit
held by party c.

2. Party a thus has a single qubit coupled to two perfect
entangled quantum channels.

3. This party could exploit this to teleport two perfect copies of
an unknown input state, thereby violating the no-cloning
theorem, and thus the linearity of quantum mechanics.



Mixed state entanglement can be shared

The W-state |ψ〉 = (| 001〉 + | 010〉 + | 100〉)/
√

3 has bi-partite
reduced states that are all identical and entangled.

◮ ‘sharing of mixed state entanglement’, or ‘promiscuity of
entanglement’.



Mixed state entanglement can be shared

The W-state |ψ〉 = (| 001〉 + | 010〉 + | 100〉)/
√

3 has bi-partite
reduced states that are all identical and entangled.

◮ ‘sharing of mixed state entanglement’, or ‘promiscuity of
entanglement’.

But this promiscuity is not unbounded: no entangled
bi-partite state can be shared with an infinite number of parties.

Here a bi-partite state ρab is said to be N-shareable when it is
possible to find a quantum state ρab1b2...bN such that

ρab = ρab1 = ρab2 = . . . = ρabN ,

where ρabk is the reduced state for parties a and bk.

• Fannes et al. [1988], Raggio et al. [1989]: A bi-partite state is
N-shareable for all N (also called ∞-shareable) iff it is separable.



Quantifying the monogamy of entanglement

Coffman, Kundu and Wootters [2000] gave a trade-off relation
between how entangled a is with b, and how entangled a is with c
in a three-qubit system abc that is in a pure state:

τ(ρab) + τ(ρac) ≤ 4 detρa

with ρa = Trbc[|ψ〉〈ψ|] and |ψ〉 the pure three-qubit state, where
τ(ρab) is the tangle between A and B, analogous for τ(ρac).

The multi-partite generalization has been recently proven by
Osborne & Verstraete [2006].



Interlude 1: Correlations in terms of joint probabilities

Surface probabilities: P(a, b|A,B)

Determined via measurement of relative frequencies.

Subsurface probabilities: P(a, b|A,B, λ)

Generally inaccessible, conditioned on hidden variables.

◮ Definitions of different kinds of bi-partite surface correlations:

a) Local: P(a, b|A,B) =
∫
Λ

dλρ(λ) P(a|A, λ)P(b|B, λ).

b) Quantum: P(a, b|A,B) =Tr[ MA
a ⊗ MB

b ρ ],
∑

a MA
a = 1.

c) No-signalling: P(a|A)B = P(a|A)B′

:= P(a|A)

where P(a|A)B =
∑

b P(a, b|A,B), etc.

d) Deterministic: P(a, b|A,B) ∈ {0, 1}.



Interlude 2: Non-local correlations and Bell’s inequality

B

B′b′ = ±1

b = ±1 A

A′ a′ = ±1

a = ±1

λ

III

– ‘local causality’: P(a, b|A,B, λ) = P(a|A, λ)P(b|B, λ).

– Independence of the Source (IS): ρ(λ|A,B) = ρ(λ).

◮ local causality ∧ IS =⇒ P(a, b|A,B) =
∫
Λ

P(a|A, λ)P(b|B, λ)ρ(λ)dλ

(all correlations are local correlations)

◮ Consider the Bell-polynomial Bab = AB + AB′ + A′B − A′B′, then

|〈Bab〉lhv| = |〈AB〉lhv + 〈AB′〉lhv + 〈A′B〉lhv − 〈A′B′〉lhv| ≤ 2



Monogamy of non-local correlations

Suppose one has some no-signalling three-party probability
distribution P(a1, a2, a3|A1,A2,A3) for parties a, b and c.

◮ Then in case the marginal distribution P(a1, a2|A1,A2) for ab is
extremal (a vertex of the no-signalling polytope) it cannot be
correlated to the third system c:

P(a1, a2, a3|A1,A2,A3) = P(a1, a2|A1,A2)P(a3|A3),

which implies that party c is completely uncorrelated with party
ab: the extremal correlation P(a1, a2|A1,A2) is completely
monogamous.

Note that this implies that all local Bell-type inequalities for which
the maximal violation consistent with no-signalling is attained by
a unique correlation have monogamy constraints. An example is
the CHSH inequality, as will be shown below.



Quantifying the monogamy of non-local correlations

Extremal no-signalling correlations thus show monogamy, but
what about non-extremal no-signalling correlations?

◮ Just as was the case for quantum states where non-extremal
(mixed state) entanglement can be shared, non-extremal
no-signalling correlations can be shared as well.

• Toner [2006] proved a tight trade-off relation:

|〈Bab〉ns| + |〈Bac〉ns| ≤ 4.

Extremal no-signalling correlations can attain |〈Bab〉ns| = 4 so that
necessarily |〈Bac〉ns| = 0, and vice versa (this is monogamy of
extremal no-signalling correlations), whereas non-extremal ones
are shareable.



Monogamy for other kinds of correlations

Bab = AB + AB′ + A′B − A′B′ , Bac = AC + A′C + AC′ − A′C′

• For general unrestricted correlations no monogamy holds, i.e.,
|〈Bab〉| and |〈Bac〉| are not mutually constrained.

• Quantum correlations are monogamous: 〈Bab〉2
qm + 〈Bac〉2

qm ≤ 8.

• Classical correlations are not monogamous. It is possible to
have both |〈Bab〉lhv| = 2 and |〈Bac〉lhv| = 2.

• Separable quantum state are neither monogamous:
|〈Bab〉qm|, |〈Bac〉qm| ≤ 2, ρ ∈ Qsep.

(For orthogonal measurements a stronger bound holds: ≤
√

2)



Monogamy of correlations

Bab = AB + AB′ + A′B − A′B′ , Bac = AC + A′C + AC′ − A′C′

|〈Bab〉|, |〈Bac〉| ≤ 4

|〈Bab〉ns| + |〈Bac〉ns| ≤ 4 a

〈Bab〉2
qm + 〈Bac〉2

qm ≤ 8 ρ ∈ Q b

|〈Bab〉lhv|, |〈Bac〉lhv| ≤ 2

For A ⊥ A′,B ⊥ B′,C ⊥ C′:

|〈Bab〉qm|, |〈Bac〉qm| ≤
√

2 ρ ∈ Qsep

aToner [2006]
bToner & Verstraete [2006]
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Consequences of this monogamy of correlations

In case the no-signalling correlations are non-local they can not
be shared (it is impossible that both |〈Bab〉ns| ≥ 2 and |〈Bac〉ns| ≥ 2).

◮ The monogamy bound therefore
gives a way of discriminating no-
signalling from general correlations:
if the bound is violated the correlations
cannot be no-signalling (i.e., they
must be signalling).

◮ Extremal quantum and no-signalling
correlations are fully monogamous.

◮ This allows for secure key-distribution
protocols that are based on the laws of
physics only (and not on some
computationally hard procedure).
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Shareability of correlations

A general unrestricted distribution P(a, b1|A,B1, . . . ,BN) is
N-shareable with respect to the second party if an (N + 1)-partite
distribution

P(a, b1, . . . , bN |A,B1, . . . ,BN)

exists, symmetric with respect to (b1,B1), (b2,B2), . . . , (bN ,BN)
and with marginals P(a, bi|A,B1, . . . ,BN) equal to the original
distribution P(a, b1|A,B1, . . . ,BN), for all i.

◮ If a distribution is shareable for all N it is called ∞-shareable.

Analogously: a no-signalling distribution P(a, b1|A,B1) is
N-shareable if the (N + 1)-partite distribution has marginals
P(a, bi|A,Bi) equal to the original distribution P(a, b1|A,B1), for all
i.



Consider a general unrestricted correlation P(a, b1|A,B1, . . . ,BN).
We can then construct

P(a, b1, . . . , bN |A,B1, . . . ,BN) = P(a, b1|A,B1, . . . ,BN)δb1,b2 · · · δb1,bN ,

which has the same marginals P(a, bi|A,B1, . . . ,BN) equal to the
original distribution P(a, b1|A,B1, . . . ,BN). This holds for all i,
thereby proving the ∞-shareability, i.e., it can be shared for all N.

If we restrict the distributions to be no-signalling, Masanes, et al
[2006] proved that ∞-shareability implies that the distribution is
local, i.e., it can be written as

P(a, b1, . . . , bN |A,B1 . . . ,BN) =∫
Λ

dλp(λ)P(a|A, λ)P(b1 |B1, λ) · · · P(bN |BN , λ),

for some local distributions P(a|A, λ),P(b1|B1, λ), . . . ,P(bN |BN , λ)
and hidden-variable distribution p(λ).



local realism ⇐⇒ ∞-shareability of correlations

∃ local model for P(a, b|A,B) when party 1 has an arbitrary
number and party 2 has N possible measurements

⇐⇒
N-shareability of correlations

◮ Proof:

=⇒ classical information can be cloned indefinitely.

⇐= Since P(a, b|A,B) is shareable to N parties (labelled Bi,
i = 1, . . . ,N), the correlations between A performed on party 1
and Bi on party 2 are the same as the correlations between
measurements of A on party 1 and Bi on the extra party Bi.

Therefore, the N measurements B1, . . . ,BN performed by party 2
can be viewed as one large measurement performed on the N
parties Bi (i = 1, . . . ,N). Lastly, there always exists a local hidden
variable model when one of the two parties has only one
measurement.



Interlude: Interpreting Bell’s Theorem

◮ Schumacher [2008]: Bell’s theorem is about the shareability
of correlations; its real physical message is not about local
realism, since we don’t need ∞-shareable (i.e., local realism) to
obtain the CHSH inequality that quantum mechanics violates.

• Claim: 2-shareability is sufficient to obtain the CHSH
inequality ; and this is a weaker claim than the assumption of
local realism.



Interlude: 2-shareability implies CHSH inequality

Consider an EPR-Bohm setup for parties 1 and 2.

Assume that all possible correlations between 1 and 2 are shareable to
another party 1’ and 2’ that conceivably exist. Then for the outcomes:

a(c + d′) + b′(c − d′) = ±2

which implies for the expectation values

|〈AC〉 + 〈AD′〉 + 〈B′C〉 − 〈B′D′〉| ≤ 2

2-shareability implies

|〈AC〉 + 〈AD〉 + 〈BC〉 − 〈BD〉| ≤ 2

The shareability justifies the counterfactual
reasoning.

A C

B′ D′

1 2

1
′

2
′



Interlude: critique

1) Despite Schumacher’s argument, it is indeed still the case that
quantum mechanics is non-local in the sense that some quantum
correlations cannot be given a factorisable form in terms of local
correlations.

2) The argument is not logically weaker than standard
derivations of Bell’s theorem. For all that is needed to get Bell’s
theorem is the CHSH inequality, and in order to get this from the
requirements of the doctrine of local realism we only need to
assume that local realism holds just for measurement of four
different observables: two for party 1 (e.g., A,A′) and two for
party 2 (e.g., B,B′).

It is thus not necessary to assume full blown local realism for an
unlimited number of observables and parties.



Section III: Discussion: Interpreting the world

Thus: according to modern physics the world is such that in
general we encounter limits on the shareability of the
subsystem-structure of composite systems.

◮ Indeed: local realism ⇐⇒ ∞-shareability of correlations

However, quantum correlations are not always shareable, let
alone ∞-shareable. Furthermore, the same holds for more
general no-signalling correlations.

=⇒ Technical breakthrough: such correlations can be used to
distribute a secret key which is secure against eavesdroppers
which are only constrained by the fact that any information
accessible to them must be compatible with no-signalling, i.e.,
roughly the impossibility of arbitrarily fast signalling.

◮ Future work: What philosophical/metaphysical repercussions
does all this have (if any)?
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